Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pymed import PubMed
|
2 |
+
from typing import List
|
3 |
+
from haystack import component
|
4 |
+
from haystack import Document
|
5 |
+
from haystack.components.generators import HuggingFaceTGIGenerator
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
import os
|
8 |
+
from haystack import Pipeline
|
9 |
+
from haystack.components.builders.prompt_builder import PromptBuilder
|
10 |
+
import gradio as gr
|
11 |
+
import time
|
12 |
+
|
13 |
+
# load_dotenv()
|
14 |
+
|
15 |
+
# os.environ['HUGGINGFACE_API_KEY'] = os.getenv('HUGGINGFACE_API_KEY')
|
16 |
+
|
17 |
+
|
18 |
+
pubmed = PubMed(tool="Haystack2.0Prototype", email="dummyemail@gmail.com")
|
19 |
+
|
20 |
+
def documentize(article):
|
21 |
+
return Document(content=article.abstract, meta={'title': article.title, 'keywords': article.keywords})
|
22 |
+
|
23 |
+
@component
|
24 |
+
class PubMedFetcher():
|
25 |
+
|
26 |
+
@component.output_types(articles=List[Document])
|
27 |
+
def run(self, queries: list[str]):
|
28 |
+
cleaned_queries = queries[0].strip().split('\n')
|
29 |
+
|
30 |
+
articles = []
|
31 |
+
try:
|
32 |
+
for query in cleaned_queries:
|
33 |
+
response = pubmed.query(query, max_results = 1)
|
34 |
+
documents = [documentize(article) for article in response]
|
35 |
+
articles.extend(documents)
|
36 |
+
except Exception as e:
|
37 |
+
print(e)
|
38 |
+
print(f"Couldn't fetch articles for queries: {queries}" )
|
39 |
+
results = {'articles': articles}
|
40 |
+
return results
|
41 |
+
|
42 |
+
keyword_llm = HuggingFaceTGIGenerator("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
43 |
+
keyword_llm.warm_up()
|
44 |
+
|
45 |
+
llm = HuggingFaceTGIGenerator("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
46 |
+
llm.warm_up()
|
47 |
+
|
48 |
+
|
49 |
+
keyword_prompt_template = """
|
50 |
+
Your task is to convert the following question into 3 keywords that can be used to find relevant medical research papers on PubMed.
|
51 |
+
Here is an examples:
|
52 |
+
question: "What are the latest treatments for major depressive disorder?"
|
53 |
+
keywords:
|
54 |
+
Antidepressive Agents
|
55 |
+
Depressive Disorder, Major
|
56 |
+
Treatment-Resistant depression
|
57 |
+
---
|
58 |
+
question: {{ question }}
|
59 |
+
keywords:
|
60 |
+
"""
|
61 |
+
|
62 |
+
prompt_template = """
|
63 |
+
Answer the question truthfully based on the given documents.
|
64 |
+
If the documents don't contain an answer, use your existing knowledge base.
|
65 |
+
q: {{ question }}
|
66 |
+
Articles:
|
67 |
+
{% for article in articles %}
|
68 |
+
{{article.content}}
|
69 |
+
keywords: {{article.meta['keywords']}}
|
70 |
+
title: {{article.meta['title']}}
|
71 |
+
{% endfor %}
|
72 |
+
"""
|
73 |
+
|
74 |
+
keyword_prompt_builder = PromptBuilder(template=keyword_prompt_template)
|
75 |
+
|
76 |
+
prompt_builder = PromptBuilder(template=prompt_template)
|
77 |
+
fetcher = PubMedFetcher()
|
78 |
+
|
79 |
+
pipe = Pipeline()
|
80 |
+
|
81 |
+
pipe.add_component("keyword_prompt_builder", keyword_prompt_builder)
|
82 |
+
pipe.add_component("keyword_llm", keyword_llm)
|
83 |
+
pipe.add_component("pubmed_fetcher", fetcher)
|
84 |
+
pipe.add_component("prompt_builder", prompt_builder)
|
85 |
+
pipe.add_component("llm", llm)
|
86 |
+
|
87 |
+
pipe.connect("keyword_prompt_builder.prompt", "keyword_llm.prompt")
|
88 |
+
pipe.connect("keyword_llm.replies", "pubmed_fetcher.queries")
|
89 |
+
|
90 |
+
pipe.connect("pubmed_fetcher.articles", "prompt_builder.articles")
|
91 |
+
pipe.connect("prompt_builder.prompt", "llm.prompt")
|
92 |
+
|
93 |
+
def ask(question):
|
94 |
+
output = pipe.run(data={"keyword_prompt_builder":{"question":question},
|
95 |
+
"prompt_builder":{"question": question},
|
96 |
+
"llm":{"generation_kwargs": {"max_new_tokens": 500}}})
|
97 |
+
print(question)
|
98 |
+
print(output['llm']['replies'][0])
|
99 |
+
return output['llm']['replies'][0]
|
100 |
+
|
101 |
+
# result = ask("How are mRNA vaccines being used for cancer treatment?")
|
102 |
+
|
103 |
+
# print(result)
|
104 |
+
|
105 |
+
iface = gr.Interface(fn=ask, inputs=gr.Textbox(
|
106 |
+
value="How are mRNA vaccines being used for cancer treatment?"),
|
107 |
+
outputs="markdown",
|
108 |
+
title="LLM Augmented Q&A over PubMed Search Engine",
|
109 |
+
description="Ask a question about BioMedical and get an answer from a friendly AI assistant.",
|
110 |
+
examples=[["How are mRNA vaccines being used for cancer treatment?"],
|
111 |
+
["Suggest me some Case Studies related to Pneumonia."],
|
112 |
+
["Tell me about HIV AIDS."],["Suggest some case studies related to Auto Immune Disorders."],
|
113 |
+
["How to treat a COVID infected Patient?"]],
|
114 |
+
theme=gr.themes.Soft(),
|
115 |
+
allow_flagging="never",)
|
116 |
+
|
117 |
+
iface.launch(debug=True)
|