Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
from diffusers import (
|
6 |
+
DiffusionPipeline,
|
7 |
+
DDIMScheduler,
|
8 |
+
DPMSolverMultistepScheduler,
|
9 |
+
EulerAncestralDiscreteScheduler,
|
10 |
+
EulerDiscreteScheduler,
|
11 |
+
LMSDiscreteScheduler,
|
12 |
+
PNDMScheduler,
|
13 |
+
UniPCMultistepScheduler,
|
14 |
+
)
|
15 |
+
from diffusers.utils import make_image_grid
|
16 |
+
|
17 |
+
ACCESS_TOKEN = os.environ["ACCESS_TOKEN"]
|
18 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
19 |
+
"stabilityai/japanese-stable-diffusion-xl",
|
20 |
+
trust_remote_code=True,
|
21 |
+
torch_dtype=torch.float16,
|
22 |
+
use_auth_token=ACCESS_TOKEN
|
23 |
+
)
|
24 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
25 |
+
pipeline.to(device)
|
26 |
+
SCHEDULER_MAPPING = {
|
27 |
+
"ddim": DDIMScheduler,
|
28 |
+
"plms": PNDMScheduler,
|
29 |
+
"lms": LMSDiscreteScheduler,
|
30 |
+
"euler": EulerDiscreteScheduler,
|
31 |
+
"euler_ancestral": EulerAncestralDiscreteScheduler,
|
32 |
+
"dpm_solver++": DPMSolverMultistepScheduler,
|
33 |
+
"unipc": UniPCMultistepScheduler,
|
34 |
+
}
|
35 |
+
noise_scheduler_name = "euler"
|
36 |
+
SD_XL_BASE_RATIOS = {
|
37 |
+
"0.5": (704, 1408),
|
38 |
+
"0.52": (704, 1344),
|
39 |
+
"0.57": (768, 1344),
|
40 |
+
"0.6": (768, 1280),
|
41 |
+
"0.68": (832, 1216),
|
42 |
+
"0.72": (832, 1152),
|
43 |
+
"0.78": (896, 1152),
|
44 |
+
"0.82": (896, 1088),
|
45 |
+
"0.88": (960, 1088),
|
46 |
+
"0.94": (960, 1024),
|
47 |
+
"1.0": (1024, 1024),
|
48 |
+
"1.07": (1024, 960),
|
49 |
+
"1.13": (1088, 960),
|
50 |
+
"1.21": (1088, 896),
|
51 |
+
"1.29": (1152, 896),
|
52 |
+
"1.38": (1152, 832),
|
53 |
+
"1.46": (1216, 832),
|
54 |
+
"1.67": (1280, 768),
|
55 |
+
"1.75": (1344, 768),
|
56 |
+
"1.91": (1344, 704),
|
57 |
+
"2.0": (1408, 704),
|
58 |
+
"2.09": (1472, 704),
|
59 |
+
"2.4": (1536, 640),
|
60 |
+
"2.5": (1600, 640),
|
61 |
+
"2.89": (1664, 576),
|
62 |
+
"3.0": (1728, 576),
|
63 |
+
# "small": (512, 512), # for testing
|
64 |
+
}
|
65 |
+
|
66 |
+
|
67 |
+
def set_noise_scheduler(name) -> None:
|
68 |
+
pipeline.scheduler = SCHEDULER_MAPPING[name].from_config(pipeline.scheduler.config)
|
69 |
+
|
70 |
+
|
71 |
+
def infer(
|
72 |
+
prompt,
|
73 |
+
scale=7.5,
|
74 |
+
steps=40,
|
75 |
+
ratio="1.0",
|
76 |
+
n_samples=1,
|
77 |
+
seed="random",
|
78 |
+
negative_prompt="",
|
79 |
+
scheduler_name="euler",
|
80 |
+
):
|
81 |
+
global noise_scheduler_name
|
82 |
+
if noise_scheduler_name != scheduler_name:
|
83 |
+
set_noise_scheduler(scheduler_name)
|
84 |
+
noise_scheduler_name = scheduler_name
|
85 |
+
scale = float(scale)
|
86 |
+
steps = int(steps)
|
87 |
+
W, H = SD_XL_BASE_RATIOS[ratio]
|
88 |
+
n_samples = int(n_samples)
|
89 |
+
if seed == "random":
|
90 |
+
seed = random.randint(0, 2**32)
|
91 |
+
seed = int(seed)
|
92 |
+
|
93 |
+
images = pipeline(
|
94 |
+
prompt=prompt,
|
95 |
+
negative_prompt=negative_prompt if len(negative_prompt) > 0 else None,
|
96 |
+
guidance_scale=scale,
|
97 |
+
generator=torch.Generator(device=device).manual_seed(seed),
|
98 |
+
num_images_per_prompt=n_samples,
|
99 |
+
num_inference_steps=steps,
|
100 |
+
height=H,
|
101 |
+
width=W,
|
102 |
+
).images
|
103 |
+
# grid = make_image_grid(images, 1, len(images))
|
104 |
+
return (
|
105 |
+
images,
|
106 |
+
{
|
107 |
+
"seed": seed,
|
108 |
+
},
|
109 |
+
)
|
110 |
+
|
111 |
+
|
112 |
+
examples = [
|
113 |
+
["柴犬、カラフルアート"],
|
114 |
+
["満面の笑みのお爺さん、スケッチ"],
|
115 |
+
["星空の中の1匹の鹿、アート"],
|
116 |
+
["ジャングルに立っている日本男性のポートレート"],
|
117 |
+
["茶色の猫のイラスト、アニメ"],
|
118 |
+
["舞妓さんのポートレート、デジタルアート"],
|
119 |
+
]
|
120 |
+
with gr.Blocks() as demo:
|
121 |
+
gr.Markdown("# Japanese Stable Diffusion XL Demo")
|
122 |
+
gr.Markdown(
|
123 |
+
"""[Japanese Stable Diffusion XL](https://huggingface.co/stabilityai/japanese-stable-diffusion-xl) is a Japanese-version SDXL by [Stability AI](https://ja.stability.ai/).
|
124 |
+
- Blog: https://ja.stability.ai/blog/japanese-stable-diffusion-xl
|
125 |
+
- Twitter: https://twitter.com/StabilityAI_JP
|
126 |
+
- Discord: https://discord.com/invite/StableJP"""
|
127 |
+
)
|
128 |
+
gr.Markdown(
|
129 |
+
"### You can also try JSDXL on Google Colab [here](https://colab.research.google.com/github/Stability-AI/model-demo-notebooks/blob/main/japanese_stable_diffusion_xl.ipynb). "
|
130 |
+
)
|
131 |
+
with gr.Group():
|
132 |
+
with gr.Row():
|
133 |
+
prompt = gr.Textbox(
|
134 |
+
label="prompt",
|
135 |
+
max_lines=1,
|
136 |
+
show_label=False,
|
137 |
+
placeholder="Enter your prompt",
|
138 |
+
container=False,
|
139 |
+
)
|
140 |
+
btn = gr.Button("Run", scale=0)
|
141 |
+
gallery = gr.Gallery(label="Generated images", show_label=False)
|
142 |
+
with gr.Accordion(label="sampling info", open=False):
|
143 |
+
info = gr.JSON(label="sampling_info")
|
144 |
+
with gr.Accordion(open=False, label="Advanced options"):
|
145 |
+
scale = gr.Number(value=7.5, label="cfg_scale")
|
146 |
+
steps = gr.Number(value=25, label="steps", visible=False)
|
147 |
+
size_ratio = gr.Dropdown(
|
148 |
+
choices=list(SD_XL_BASE_RATIOS.keys()),
|
149 |
+
value="1.0",
|
150 |
+
label="size ratio",
|
151 |
+
multiselect=False,
|
152 |
+
)
|
153 |
+
n_samples = gr.Slider(
|
154 |
+
minimum=1,
|
155 |
+
maximum=3,
|
156 |
+
value=2,
|
157 |
+
label="n_samples",
|
158 |
+
)
|
159 |
+
seed = gr.Text(
|
160 |
+
value="random",
|
161 |
+
label="seed (integer or 'random')",
|
162 |
+
)
|
163 |
+
negative_prompt = gr.Textbox(
|
164 |
+
label="negative prompt",
|
165 |
+
value="",
|
166 |
+
)
|
167 |
+
noise_scheduler = gr.Dropdown(
|
168 |
+
list(SCHEDULER_MAPPING.keys()), value="euler", visible=False
|
169 |
+
)
|
170 |
+
|
171 |
+
inputs = [
|
172 |
+
prompt,
|
173 |
+
scale,
|
174 |
+
steps,
|
175 |
+
size_ratio,
|
176 |
+
n_samples,
|
177 |
+
seed,
|
178 |
+
negative_prompt,
|
179 |
+
noise_scheduler,
|
180 |
+
]
|
181 |
+
outputs = [gallery, info]
|
182 |
+
prompt.submit(infer, inputs=inputs, outputs=outputs)
|
183 |
+
btn.click(infer, inputs=inputs, outputs=outputs)
|
184 |
+
gr.Examples(examples=examples, inputs=inputs, outputs=outputs, fn=infer)
|
185 |
+
|
186 |
+
demo.queue().launch(debug=True, share=True, show_error=True)
|