import os import random import gradio as gr import torch from diffusers import ( DiffusionPipeline, DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, UniPCMultistepScheduler, ) from diffusers.utils import make_image_grid ACCESS_TOKEN = os.environ["ACCESS_TOKEN"] pipeline = DiffusionPipeline.from_pretrained( "stabilityai/japanese-stable-diffusion-xl", trust_remote_code=True, torch_dtype=torch.float16, use_auth_token=ACCESS_TOKEN ) device = "cuda" if torch.cuda.is_available() else "cpu" pipeline.to(device) SCHEDULER_MAPPING = { "ddim": DDIMScheduler, "plms": PNDMScheduler, "lms": LMSDiscreteScheduler, "euler": EulerDiscreteScheduler, "euler_ancestral": EulerAncestralDiscreteScheduler, "dpm_solver++": DPMSolverMultistepScheduler, "unipc": UniPCMultistepScheduler, } noise_scheduler_name = "euler" SD_XL_BASE_RATIOS = { "0.5": (704, 1408), "0.52": (704, 1344), "0.57": (768, 1344), "0.6": (768, 1280), "0.68": (832, 1216), "0.72": (832, 1152), "0.78": (896, 1152), "0.82": (896, 1088), "0.88": (960, 1088), "0.94": (960, 1024), "1.0": (1024, 1024), "1.07": (1024, 960), "1.13": (1088, 960), "1.21": (1088, 896), "1.29": (1152, 896), "1.38": (1152, 832), "1.46": (1216, 832), "1.67": (1280, 768), "1.75": (1344, 768), "1.91": (1344, 704), "2.0": (1408, 704), "2.09": (1472, 704), "2.4": (1536, 640), "2.5": (1600, 640), "2.89": (1664, 576), "3.0": (1728, 576), # "small": (512, 512), # for testing } def set_noise_scheduler(name) -> None: pipeline.scheduler = SCHEDULER_MAPPING[name].from_config(pipeline.scheduler.config) def infer( prompt, scale=7.5, steps=40, ratio="1.0", n_samples=1, seed="random", negative_prompt="", scheduler_name="euler", ): global noise_scheduler_name if noise_scheduler_name != scheduler_name: set_noise_scheduler(scheduler_name) noise_scheduler_name = scheduler_name scale = float(scale) steps = int(steps) W, H = SD_XL_BASE_RATIOS[ratio] n_samples = int(n_samples) if seed == "random": seed = random.randint(0, 2**32) seed = int(seed) images = pipeline( prompt=prompt, negative_prompt=negative_prompt if len(negative_prompt) > 0 else None, guidance_scale=scale, generator=torch.Generator(device=device).manual_seed(seed), num_images_per_prompt=n_samples, num_inference_steps=steps, height=H, width=W, ).images # grid = make_image_grid(images, 1, len(images)) return ( images, { "seed": seed, }, ) examples = [ ["柴犬、カラフルアート"], ["満面の笑みのお爺さん、スケッチ"], ["星空の中の1匹の鹿、アート"], ["ジャングルに立っている日本男性のポートレート"], ["茶色の猫のイラスト、アニメ"], ["舞妓さんのポートレート、デジタルアート"], ] with gr.Blocks() as demo: gr.Markdown("# Japanese Stable Diffusion XL Demo") gr.Markdown( """[Japanese Stable Diffusion XL](https://huggingface.co/stabilityai/japanese-stable-diffusion-xl) is a Japanese-version SDXL by [Stability AI](https://ja.stability.ai/). - Blog: https://ja.stability.ai/blog/japanese-stable-diffusion-xl - Twitter: https://twitter.com/StabilityAI_JP - Discord: https://discord.com/invite/StableJP""" ) gr.Markdown( "### You can also try JSDXL on Google Colab [here](https://colab.research.google.com/github/Stability-AI/model-demo-notebooks/blob/main/japanese_stable_diffusion_xl.ipynb). " ) with gr.Group(): with gr.Row(): prompt = gr.Textbox( label="prompt", max_lines=1, show_label=False, placeholder="Enter your prompt", container=False, ) btn = gr.Button("Run", scale=0) gallery = gr.Gallery(label="Generated images", show_label=False) with gr.Accordion(label="sampling info", open=False): info = gr.JSON(label="sampling_info") with gr.Accordion(open=False, label="Advanced options"): scale = gr.Number(value=7.5, label="cfg_scale") steps = gr.Number(value=25, label="steps", visible=False) size_ratio = gr.Dropdown( choices=list(SD_XL_BASE_RATIOS.keys()), value="1.0", label="size ratio", multiselect=False, ) n_samples = gr.Slider( minimum=1, maximum=3, value=2, label="n_samples", ) seed = gr.Text( value="random", label="seed (integer or 'random')", ) negative_prompt = gr.Textbox( label="negative prompt", value="", ) noise_scheduler = gr.Dropdown( list(SCHEDULER_MAPPING.keys()), value="euler", visible=False ) inputs = [ prompt, scale, steps, size_ratio, n_samples, seed, negative_prompt, noise_scheduler, ] outputs = [gallery, info] prompt.submit(infer, inputs=inputs, outputs=outputs) btn.click(infer, inputs=inputs, outputs=outputs) gr.Examples(examples=examples, inputs=inputs, outputs=outputs, fn=infer) demo.queue().launch(debug=True, share=True, show_error=True)