multimodalart HF staff commited on
Commit
9132934
·
1 Parent(s): a6e6764

Testing a max queue size of 10

Browse files

And some comments and text changing

Files changed (1) hide show
  1. app.py +7 -2
app.py CHANGED
@@ -10,17 +10,22 @@ import re
10
  model_id = "CompVis/stable-diffusion-v1-4"
11
  device = "cuda"
12
 
 
13
  pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=True, revision="fp16", torch_dtype=torch.float16)
14
  pipe = pipe.to(device)
 
15
  word_list_dataset = load_dataset("stabilityai/word-list", data_files="list.txt", use_auth_token=True)
16
  word_list = word_list_dataset["train"]['text']
17
 
18
  def infer(prompt, samples, steps, scale, seed):
 
19
  for filter in word_list:
20
  if re.search(rf"\b{filter}\b", prompt):
21
  raise gr.Error("Unsafe content found. Please try again with different prompts.")
22
 
23
  generator = torch.Generator(device=device).manual_seed(seed)
 
 
24
  with autocast("cuda"):
25
  images_list = pipe(
26
  [prompt] * samples,
@@ -160,7 +165,7 @@ examples = [
160
  1024,
161
  ],
162
  [
163
- "A small cabin on top of a snowy mountain in the style of disney, arstation",
164
  4,
165
  45,
166
  7,
@@ -300,4 +305,4 @@ Despite how impressive being able to turn text into image is, beware to the fact
300
  """
301
  )
302
 
303
- block.queue(max_size=40).launch()
 
10
  model_id = "CompVis/stable-diffusion-v1-4"
11
  device = "cuda"
12
 
13
+ #If you are running this code locally, you need to either do a 'huggingface-cli login` or paste your User Access Token from here https://huggingface.co/settings/tokens into the use_auth_token field below.
14
  pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=True, revision="fp16", torch_dtype=torch.float16)
15
  pipe = pipe.to(device)
16
+ #When running locally, you won`t have access to this, so you can remove this part
17
  word_list_dataset = load_dataset("stabilityai/word-list", data_files="list.txt", use_auth_token=True)
18
  word_list = word_list_dataset["train"]['text']
19
 
20
  def infer(prompt, samples, steps, scale, seed):
21
+ #When running locally you can also remove this filter
22
  for filter in word_list:
23
  if re.search(rf"\b{filter}\b", prompt):
24
  raise gr.Error("Unsafe content found. Please try again with different prompts.")
25
 
26
  generator = torch.Generator(device=device).manual_seed(seed)
27
+
28
+ #If you are running locally with CPU, you can remove the `with autocast("cuda")`
29
  with autocast("cuda"):
30
  images_list = pipe(
31
  [prompt] * samples,
 
165
  1024,
166
  ],
167
  [
168
+ "A small cabin on top of a snowy mountain in the style of Disney, artstation",
169
  4,
170
  45,
171
  7,
 
305
  """
306
  )
307
 
308
+ block.queue(max_size=10).launch()