multimodalart's picture
Update app.py
015885c
raw
history blame
3.92 kB
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
import time
import numpy as np
from torch.nn import functional as F
import os
from threading import Thread
print(f"Starting to load the model to memory")
m = AutoModelForCausalLM.from_pretrained(
"stabilityai/stablelm-tuned-alpha-7b", torch_dtype=torch.float16).cuda()
tok = AutoTokenizer.from_pretrained("stabilityai/stablelm-tuned-alpha-7b")
generator = pipeline('text-generation', model=m, tokenizer=tok, device=0)
print(f"Sucessfully loaded the model to the memory")
start_message = """<|SYSTEM|># StableAssistant
- StableAssistant is A helpful and harmless Open Source AI Language Model developed by Stability and CarperAI.
- StableAssistant is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
- StableAssistant is more than just an information source, StableAssistant is also able to write poetry, short stories, and make jokes.
- StableAssistant will refuse to participate in anything that could harm a human."""
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
stop_ids = [50278, 50279, 50277, 1, 0]
for stop_id in stop_ids:
if input_ids[0][-1] == stop_id:
return True
return False
def user(user_message, history):
history = history + [[user_message, ""]]
return "", history, history
def bot(history, curr_system_message):
stop = StopOnTokens()
messages = curr_system_message + \
"".join(["".join(["<|USER|>"+item[0], "<|ASSISTANT|>"+item[1]])
for item in history])
#model_inputs = tok([messages], return_tensors="pt")['input_ids'].cuda()[:, :4096-1024]
model_inputs = tok([messages], return_tensors="pt").to("cuda")
streamer = TextIteratorStreamer(tok, timeout=10., skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
model_inputs,
streamer=streamer,
max_new_tokens=1024,
do_sample=True,
top_p=0.95,
top_k=1000,
temperature=1.0,
num_beams=1,
stopping_criteria=StoppingCriteriaList([stop])
)
t = Thread(target=m.generate, kwargs=generate_kwargs)
t.start()
print(history)
for new_text in streamer:
print(new_text)
history[-1][1] += new_text
yield history, history
return history, history
with gr.Blocks() as demo:
history = gr.State([])
gr.Markdown("## StableLM-Tuned-Alpha-7b Chat")
gr.HTML('''<center><a href="https://huggingface.co/spaces/stabilityai/stablelm-tuned-alpha-chat?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate the Space to skip the queue and run in a private space</center>''')
chatbot = gr.Chatbot().style(height=500)
with gr.Row():
with gr.Column(scale=0.70):
msg = gr.Textbox(label="Chat Message Box", placeholder="Chat Message Box", show_label=False).style(container=False)
with gr.Column(scale=0.30):
with gr.Row():
submit = gr.Button("Submit")
clear = gr.Button("Clear")
system_msg = gr.Textbox(
start_message, label="System Message", interactive=False, visible=False)
msg.submit(fn=user, inputs=[msg, history], outputs=[msg, chatbot, history], queue=False).then(
fn=bot, inputs=[chatbot, system_msg], outputs=[chatbot, history], queue=True)
submit.click(fn=user, inputs=[msg, history], outputs=[msg, chatbot, history], queue=False).then(
fn=bot, inputs=[chatbot, system_msg], outputs=[chatbot, history], queue=True)
clear.click(lambda: [None, []], None, [chatbot, history], queue=False)
demo.queue(concurrency_count=2)
demo.launch()