diff --git "a/app.py" "b/app.py"
--- "a/app.py"
+++ "b/app.py"
@@ -1,1551 +1,5 @@
-# import subprocess
-# import pip
-
-# import io
-# import base64
-# import os
-# import sys
-
-# import numpy as np
-# import torch
-# from torch import autocast
-# import diffusers
-# import requests
-
-
-# assert tuple(map(int,diffusers.__version__.split("."))) >= (0,9,0), "Please upgrade diffusers to 0.9.0"
-
-# from diffusers.configuration_utils import FrozenDict
-# from diffusers import (
-# StableDiffusionPipeline,
-# StableDiffusionInpaintPipeline,
-# StableDiffusionImg2ImgPipeline,
-# StableDiffusionInpaintPipelineLegacy,
-# DDIMScheduler,
-# LMSDiscreteScheduler,
-# DiffusionPipeline,
-# StableDiffusionUpscalePipeline,
-# DPMSolverMultistepScheduler,
-# PNDMScheduler,
-# )
-# from diffusers.models import AutoencoderKL
-# from PIL import Image
-# from PIL import ImageOps
-# import gradio as gr
-# import base64
-# import skimage
-# import skimage.measure
-# import yaml
-# import json
-# from enum import Enum
-# from utils import *
-
-# # load environment variables from the .env file
-# if os.path.exists(".env"):
-# with open(".env") as f:
-# for line in f:
-# if line.startswith("#") or not line.strip():
-# continue
-# name, value = line.strip().split("=", 1)
-# os.environ[name] = value
-
-
-# # access_token = os.environ.get("HF_ACCESS_TOKEN")
-# # print("access_token from HF 1:", access_token)
-
-# try:
-# abspath = os.path.abspath(__file__)
-# dirname = os.path.dirname(abspath)
-# os.chdir(dirname)
-# except:
-# pass
-
-
-# USE_NEW_DIFFUSERS = True
-# RUN_IN_SPACE = "RUN_IN_HG_SPACE" in os.environ
-
-
-# class ModelChoice(Enum):
-# INPAINTING = "stablediffusion-inpainting"
-# INPAINTING2 = "stablediffusion-2-inpainting"
-# INPAINTING_IMG2IMG = "stablediffusion-inpainting+img2img-1.5"
-# MODEL_2_1 = "stablediffusion-2.1"
-# MODEL_2_0_V = "stablediffusion-2.0v"
-# MODEL_2_0 = "stablediffusion-2.0"
-# MODEL_1_5 = "stablediffusion-1.5"
-# MODEL_1_4 = "stablediffusion-1.4"
-
-
-# try:
-# from sd_grpcserver.pipeline.unified_pipeline import UnifiedPipeline
-# except:
-# UnifiedPipeline = StableDiffusionInpaintPipeline
-
-# # sys.path.append("./glid_3_xl_stable")
-
-# USE_GLID = False
-# # try:
-# # from glid3xlmodel import GlidModel
-# # except:
-# # USE_GLID = False
-
-# # ******** ORIGINAL ***********
-# # try:
-# # import onnxruntime
-# # onnx_available = True
-# # onnx_providers = ["CUDAExecutionProvider", "DmlExecutionProvider", "OpenVINOExecutionProvider", 'CPUExecutionProvider']
-# # available_providers = onnxruntime.get_available_providers()
-# # onnx_providers = [item for item in onnx_providers if item in available_providers]
-# # except:
-# # onnx_available = False
-# # onnx_providers = []
-
-
-# # try:
-# # cuda_available = torch.cuda.is_available()
-# # except:
-# # cuda_available = False
-# # finally:
-# # if sys.platform == "darwin":
-# # device = "mps" if torch.backends.mps.is_available() else "cpu"
-# # elif cuda_available:
-# # device = "cuda"
-# # else:
-# # device = "cpu"
-
-# # if device != "cuda":
-# # import contextlib
-
-# # autocast = contextlib.nullcontext
-
-# # with open("config.yaml", "r") as yaml_in:
-# # yaml_object = yaml.safe_load(yaml_in)
-# # config_json = json.dumps(yaml_object)
-
-# # ******** ^ ORIGINAL ^ ***********
-
-# try:
-# cuda_available = torch.cuda.is_available()
-# except:
-# cuda_available = False
-# finally:
-# if sys.platform == "darwin":
-# device = "mps" if torch.backends.mps.is_available() else "cpu"
-# elif cuda_available:
-# device = "cuda"
-# else:
-# device = "cpu"
-
-# import contextlib
-
-# autocast = contextlib.nullcontext
-
-# with open("config.yaml", "r") as yaml_in:
-# yaml_object = yaml.safe_load(yaml_in)
-# config_json = json.dumps(yaml_object)
-
-
-# # new ^
-
-# def load_html():
-# body, canvaspy = "", ""
-# with open("index.html", encoding="utf8") as f:
-# body = f.read()
-# with open("canvas.py", encoding="utf8") as f:
-# canvaspy = f.read()
-# body = body.replace("- paths:\n", "")
-# body = body.replace(" - ./canvas.py\n", "")
-# body = body.replace("from canvas import InfCanvas", canvaspy)
-# return body
-
-
-# def test(x):
-# x = load_html()
-# return f""""""
-
-
-# DEBUG_MODE = False
-
-# try:
-# SAMPLING_MODE = Image.Resampling.LANCZOS
-# except Exception as e:
-# SAMPLING_MODE = Image.LANCZOS
-
-# try:
-# contain_func = ImageOps.contain
-# except Exception as e:
-
-# def contain_func(image, size, method=SAMPLING_MODE):
-# # from PIL: https://pillow.readthedocs.io/en/stable/reference/ImageOps.html#PIL.ImageOps.contain
-# im_ratio = image.width / image.height
-# dest_ratio = size[0] / size[1]
-# if im_ratio != dest_ratio:
-# if im_ratio > dest_ratio:
-# new_height = int(image.height / image.width * size[0])
-# if new_height != size[1]:
-# size = (size[0], new_height)
-# else:
-# new_width = int(image.width / image.height * size[1])
-# if new_width != size[0]:
-# size = (new_width, size[1])
-# return image.resize(size, resample=method)
-
-
-# import argparse
-
-# parser = argparse.ArgumentParser(description="stablediffusion-infinity")
-# parser.add_argument("--port", type=int, help="listen port", dest="server_port")
-# parser.add_argument("--host", type=str, help="host", dest="server_name")
-# parser.add_argument("--share", action="store_true", help="share this app?")
-# parser.add_argument("--debug", action="store_true", help="debug mode")
-# parser.add_argument("--fp32", action="store_true", help="using full precision")
-# parser.add_argument("--lowvram", action="store_true", help="using lowvram mode")
-# parser.add_argument("--encrypt", action="store_true", help="using https?")
-# parser.add_argument("--ssl_keyfile", type=str, help="path to ssl_keyfile")
-# parser.add_argument("--ssl_certfile", type=str, help="path to ssl_certfile")
-# parser.add_argument("--ssl_keyfile_password", type=str, help="ssl_keyfile_password")
-# parser.add_argument(
-# "--auth", nargs=2, metavar=("username", "password"), help="use username password"
-# )
-# parser.add_argument(
-# "--remote_model",
-# type=str,
-# help="use a model (e.g. dreambooth fined) from huggingface hub",
-# default="",
-# )
-# parser.add_argument(
-# "--local_model", type=str, help="use a model stored on your PC", default=""
-# )
-
-# if __name__ == "__main__":
-# args = parser.parse_args()
-# else:
-# args = parser.parse_args(["--debug"])
-# # args = parser.parse_args(["--debug"])
-# if args.auth is not None:
-# args.auth = tuple(args.auth)
-
-# model = {}
-
-# # HF function for token
-# # def get_token():
-# # token = "{access_token}"
-# # if os.path.exists(".token"):
-# # with open(".token", "r") as f:
-# # token = f.read()
-# # print("get_token called", token)
-# # token = os.environ.get("hftoken", token)
-# # return token
-
-# def get_token():
-# token = ""
-# if os.path.exists(".token"):
-# with open(".token", "r") as f:
-# token = f.read()
-# token = os.environ.get("hftoken", token)
-# return token
-
-
-# def save_token(token):
-# with open(".token", "w") as f:
-# f.write(token)
-
-
-# def prepare_scheduler(scheduler):
-# if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
-# new_config = dict(scheduler.config)
-# new_config["steps_offset"] = 1
-# scheduler._internal_dict = FrozenDict(new_config)
-# return scheduler
-
-
-# def my_resize(width, height):
-# if width >= 512 and height >= 512:
-# return width, height
-# if width == height:
-# return 512, 512
-# smaller = min(width, height)
-# larger = max(width, height)
-# if larger >= 608:
-# return width, height
-# factor = 1
-# if smaller < 290:
-# factor = 2
-# elif smaller < 330:
-# factor = 1.75
-# elif smaller < 384:
-# factor = 1.375
-# elif smaller < 400:
-# factor = 1.25
-# elif smaller < 450:
-# factor = 1.125
-# return int(factor * width) // 8 * 8, int(factor * height) // 8 * 8
-
-
-# def load_learned_embed_in_clip(
-# learned_embeds_path, text_encoder, tokenizer, token=None
-# ):
-# # https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb
-# loaded_learned_embeds = torch.load(learned_embeds_path, map_location="cpu")
-
-# # separate token and the embeds
-# trained_token = list(loaded_learned_embeds.keys())[0]
-# embeds = loaded_learned_embeds[trained_token]
-
-# # cast to dtype of text_encoder
-# dtype = text_encoder.get_input_embeddings().weight.dtype
-# embeds.to(dtype)
-
-# # add the token in tokenizer
-# token = token if token is not None else trained_token
-# num_added_tokens = tokenizer.add_tokens(token)
-# if num_added_tokens == 0:
-# raise ValueError(
-# f"The tokenizer already contains the token {token}. Please pass a different `token` that is not already in the tokenizer."
-# )
-
-# # resize the token embeddings
-# text_encoder.resize_token_embeddings(len(tokenizer))
-
-# # get the id for the token and assign the embeds
-# token_id = tokenizer.convert_tokens_to_ids(token)
-# text_encoder.get_input_embeddings().weight.data[token_id] = embeds
-
-
-# scheduler_dict = {"PLMS": None, "DDIM": None, "K-LMS": None, "DPM": None, "PNDM": None}
-
-
-# class StableDiffusionInpaint:
-# def __init__(
-# self, token: str = "", model_name: str = "", model_path: str = "", **kwargs,
-# ):
-# self.token = token
-# original_checkpoint = False
-# # if device == "cpu" and onnx_available:
-# # from diffusers import OnnxStableDiffusionInpaintPipeline
-# # inpaint = OnnxStableDiffusionInpaintPipeline.from_pretrained(
-# # model_name,
-# # revision="onnx",
-# # provider=onnx_providers[0] if onnx_providers else None
-# # )
-# # else:
-# if model_path and os.path.exists(model_path):
-# if model_path.endswith(".ckpt"):
-# original_checkpoint = True
-# elif model_path.endswith(".json"):
-# model_name = os.path.dirname(model_path)
-# else:
-# model_name = model_path
-# vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse")
-# # if device == "cuda" and not args.fp32:
-# # vae.to(torch.float16)
-# vae.to(torch.float16)
-# if original_checkpoint:
-# print(f"Converting & Loading {model_path}")
-# from convert_checkpoint import convert_checkpoint
-
-# pipe = convert_checkpoint(model_path, inpainting=True)
-# if device == "cuda":
-# pipe.to(torch.float16)
-# inpaint = StableDiffusionInpaintPipeline(
-# vae=vae,
-# text_encoder=pipe.text_encoder,
-# tokenizer=pipe.tokenizer,
-# unet=pipe.unet,
-# scheduler=pipe.scheduler,
-# safety_checker=pipe.safety_checker,
-# feature_extractor=pipe.feature_extractor,
-# )
-# else:
-# print(f"Loading {model_name}")
-# if device == "cuda":
-# inpaint = StableDiffusionInpaintPipeline.from_pretrained(
-# model_name,
-# revision="fp16",
-# torch_dtype=torch.float16,
-# use_auth_token=token,
-# vae=vae,
-# )
-# else:
-# inpaint = StableDiffusionInpaintPipeline.from_pretrained(
-# model_name, use_auth_token=token, vae=vae
-# )
-# # print(f"access_token from HF:", access_token)
-# if os.path.exists("./embeddings"):
-# print("Note that StableDiffusionInpaintPipeline + embeddings is untested")
-# for item in os.listdir("./embeddings"):
-# if item.endswith(".bin"):
-# load_learned_embed_in_clip(
-# os.path.join("./embeddings", item),
-# inpaint.text_encoder,
-# inpaint.tokenizer,
-# )
-# inpaint.to(device)
-# # if device == "mps":
-# # _ = text2img("", num_inference_steps=1)
-# scheduler_dict["PLMS"] = inpaint.scheduler
-# scheduler_dict["DDIM"] = prepare_scheduler(
-# DDIMScheduler(
-# beta_start=0.00085,
-# beta_end=0.012,
-# beta_schedule="scaled_linear",
-# clip_sample=False,
-# set_alpha_to_one=False,
-# )
-# )
-# scheduler_dict["K-LMS"] = prepare_scheduler(
-# LMSDiscreteScheduler(
-# beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear"
-# )
-# )
-# scheduler_dict["PNDM"] = prepare_scheduler(
-# PNDMScheduler(
-# beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear",
-# skip_prk_steps=True
-# )
-# )
-# scheduler_dict["DPM"] = prepare_scheduler(
-# DPMSolverMultistepScheduler.from_config(inpaint.scheduler.config)
-# )
-# self.safety_checker = inpaint.safety_checker
-# save_token(token)
-# try:
-# total_memory = torch.cuda.get_device_properties(0).total_memory // (
-# 1024 ** 3
-# )
-# if total_memory <= 5 or args.lowvram:
-# inpaint.enable_attention_slicing()
-# inpaint.enable_sequential_cpu_offload()
-# except:
-# pass
-# self.inpaint = inpaint
-
-# def run(
-# self,
-# image_pil,
-# prompt="",
-# negative_prompt="",
-# guidance_scale=7.5,
-# resize_check=True,
-# enable_safety=True,
-# fill_mode="patchmatch",
-# strength=0.75,
-# step=50,
-# enable_img2img=False,
-# use_seed=False,
-# seed_val=-1,
-# generate_num=1,
-# scheduler="",
-# scheduler_eta=0.0,
-# **kwargs,
-# ):
-# inpaint = self.inpaint
-# selected_scheduler = scheduler_dict.get(scheduler, scheduler_dict["PLMS"])
-# for item in [inpaint]:
-# item.scheduler = selected_scheduler
-# if enable_safety or self.safety_checker is None:
-# item.safety_checker = self.safety_checker
-# else:
-# item.safety_checker = lambda images, **kwargs: (images, False)
-# width, height = image_pil.size
-# sel_buffer = np.array(image_pil)
-# img = sel_buffer[:, :, 0:3]
-# mask = sel_buffer[:, :, -1]
-# nmask = 255 - mask
-# process_width = width
-# process_height = height
-# if resize_check:
-# process_width, process_height = my_resize(width, height)
-# process_width = process_width * 8 // 8
-# process_height = process_height * 8 // 8
-# extra_kwargs = {
-# "num_inference_steps": step,
-# "guidance_scale": guidance_scale,
-# "eta": scheduler_eta,
-# }
-# if USE_NEW_DIFFUSERS:
-# extra_kwargs["negative_prompt"] = negative_prompt
-# extra_kwargs["num_images_per_prompt"] = generate_num
-# if use_seed:
-# generator = torch.Generator(inpaint.device).manual_seed(seed_val)
-# extra_kwargs["generator"] = generator
-# if True:
-# if fill_mode == "g_diffuser":
-# mask = 255 - mask
-# mask = mask[:, :, np.newaxis].repeat(3, axis=2)
-# img, mask = functbl[fill_mode](img, mask)
-# else:
-# img, mask = functbl[fill_mode](img, mask)
-# mask = 255 - mask
-# mask = skimage.measure.block_reduce(mask, (8, 8), np.max)
-# mask = mask.repeat(8, axis=0).repeat(8, axis=1)
-# # extra_kwargs["strength"] = strength
-# inpaint_func = inpaint
-# init_image = Image.fromarray(img)
-# mask_image = Image.fromarray(mask)
-# # mask_image=mask_image.filter(ImageFilter.GaussianBlur(radius = 8))
-
-# # Cast input image and mask to float32
-# # init_image = init_image.convert("RGB").to(torch.float32)
-# # mask_image = mask_image.convert("L").to(torch.float32)
-# if True:
-# images = inpaint_func(
-# prompt=prompt,
-# image=init_image.resize(
-# (process_width, process_height), resample=SAMPLING_MODE
-# ),
-# mask_image=mask_image.resize((process_width, process_height)),
-# width=process_width,
-# height=process_height,
-# **extra_kwargs,
-# )["images"]
-# return images
-
-# class StableDiffusion:
-# def __init__(
-# self,
-# token: str = "",
-# model_name: str = "runwayml/stable-diffusion-v1-5",
-# model_path: str = None,
-# inpainting_model: bool = False,
-# **kwargs,
-# ):
-# self.token = token
-# original_checkpoint = False
-# vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse")
-# vae.to(torch.float16)
-# if model_path and os.path.exists(model_path):
-# if model_path.endswith(".ckpt"):
-# original_checkpoint = True
-# elif model_path.endswith(".json"):
-# model_name = os.path.dirname(model_path)
-# else:
-# model_name = model_path
-# if original_checkpoint:
-# print(f"Converting & Loading {model_path}")
-# from convert_checkpoint import convert_checkpoint
-
-# text2img = convert_checkpoint(model_path)
-# if device == "cuda" and not args.fp32:
-# text2img.to(torch.float16)
-# else:
-# print(f"Loading {model_name}")
-# if device == "cuda" and not args.fp32:
-# text2img = StableDiffusionPipeline.from_pretrained(
-# "runwayml/stable-diffusion-v1-5",
-# revision="fp16",
-# torch_dtype=torch.float16,
-# use_auth_token=token,
-# vae=vae
-# )
-# else:
-# text2img = StableDiffusionPipeline.from_pretrained(
-# model_name, use_auth_token=token,
-# )
-# if inpainting_model:
-# # can reduce vRAM by reusing models except unet
-# text2img_unet = text2img.unet
-# del text2img.vae
-# del text2img.text_encoder
-# del text2img.tokenizer
-# del text2img.scheduler
-# del text2img.safety_checker
-# del text2img.feature_extractor
-# import gc
-
-# gc.collect()
-# if device == "cuda":
-# inpaint = StableDiffusionInpaintPipeline.from_pretrained(
-# "runwayml/stable-diffusion-inpainting",
-# revision="fp16",
-# torch_dtype=torch.float16,
-# use_auth_token=token,
-# vae=vae
-# ).to(device)
-# else:
-# inpaint = StableDiffusionInpaintPipeline.from_pretrained(
-# "runwayml/stable-diffusion-inpainting", use_auth_token=token,
-# ).to(device)
-# text2img_unet.to(device)
-# del text2img
-# gc.collect()
-# text2img = StableDiffusionPipeline(
-# vae=inpaint.vae,
-# text_encoder=inpaint.text_encoder,
-# tokenizer=inpaint.tokenizer,
-# unet=text2img_unet,
-# scheduler=inpaint.scheduler,
-# safety_checker=inpaint.safety_checker,
-# feature_extractor=inpaint.feature_extractor,
-# )
-# else:
-# inpaint = StableDiffusionInpaintPipelineLegacy(
-# vae=text2img.vae,
-# text_encoder=text2img.text_encoder,
-# tokenizer=text2img.tokenizer,
-# unet=text2img.unet,
-# scheduler=text2img.scheduler,
-# safety_checker=text2img.safety_checker,
-# feature_extractor=text2img.feature_extractor,
-# ).to(device)
-# text_encoder = text2img.text_encoder
-# tokenizer = text2img.tokenizer
-# if os.path.exists("./embeddings"):
-# for item in os.listdir("./embeddings"):
-# if item.endswith(".bin"):
-# load_learned_embed_in_clip(
-# os.path.join("./embeddings", item),
-# text2img.text_encoder,
-# text2img.tokenizer,
-# )
-# text2img.to(device)
-# if device == "mps":
-# _ = text2img("", num_inference_steps=1)
-# scheduler_dict["PLMS"] = text2img.scheduler
-# scheduler_dict["DDIM"] = prepare_scheduler(
-# DDIMScheduler(
-# beta_start=0.00085,
-# beta_end=0.012,
-# beta_schedule="scaled_linear",
-# clip_sample=False,
-# set_alpha_to_one=False,
-# )
-# )
-# scheduler_dict["K-LMS"] = prepare_scheduler(
-# LMSDiscreteScheduler(
-# beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear"
-# )
-# )
-# scheduler_dict["DPM"] = prepare_scheduler(
-# DPMSolverMultistepScheduler.from_config(text2img.scheduler.config)
-# )
-# self.safety_checker = text2img.safety_checker
-# img2img = StableDiffusionImg2ImgPipeline(
-# vae=text2img.vae,
-# text_encoder=text2img.text_encoder,
-# tokenizer=text2img.tokenizer,
-# unet=text2img.unet,
-# scheduler=text2img.scheduler,
-# safety_checker=text2img.safety_checker,
-# feature_extractor=text2img.feature_extractor,
-# ).to(device)
-# save_token(token)
-# try:
-# total_memory = torch.cuda.get_device_properties(0).total_memory // (
-# 1024 ** 3
-# )
-# if total_memory <= 5:
-# inpaint.enable_attention_slicing()
-# except:
-# pass
-# self.text2img = text2img
-# self.inpaint = inpaint
-# self.img2img = img2img
-# self.unified = UnifiedPipeline(
-# vae=text2img.vae,
-# text_encoder=text2img.text_encoder,
-# tokenizer=text2img.tokenizer,
-# unet=text2img.unet,
-# scheduler=text2img.scheduler,
-# safety_checker=text2img.safety_checker,
-# feature_extractor=text2img.feature_extractor,
-# ).to(device)
-# self.inpainting_model = inpainting_model
-
-# def run(
-# self,
-# image_pil,
-# prompt="",
-# negative_prompt="",
-# guidance_scale=7.5,
-# resize_check=True,
-# enable_safety=True,
-# fill_mode="patchmatch",
-# strength=0.75,
-# step=50,
-# enable_img2img=False,
-# use_seed=False,
-# seed_val=-1,
-# generate_num=1,
-# scheduler="",
-# scheduler_eta=0.0,
-# **kwargs,
-# ):
-# text2img, inpaint, img2img, unified = (
-# self.text2img,
-# self.inpaint,
-# self.img2img,
-# self.unified,
-# )
-# selected_scheduler = scheduler_dict.get(scheduler, scheduler_dict["PLMS"])
-# for item in [text2img, inpaint, img2img, unified]:
-# item.scheduler = selected_scheduler
-# if enable_safety:
-# item.safety_checker = self.safety_checker
-# else:
-# item.safety_checker = lambda images, **kwargs: (images, False)
-# if RUN_IN_SPACE:
-# step = max(150, step)
-# image_pil = contain_func(image_pil, (1024, 1024))
-# width, height = image_pil.size
-# sel_buffer = np.array(image_pil)
-# img = sel_buffer[:, :, 0:3]
-# mask = sel_buffer[:, :, -1]
-# nmask = 255 - mask
-# process_width = width
-# process_height = height
-# if resize_check:
-# process_width, process_height = my_resize(width, height)
-# extra_kwargs = {
-# "num_inference_steps": step,
-# "guidance_scale": guidance_scale,
-# "eta": scheduler_eta,
-# }
-# if RUN_IN_SPACE:
-# generate_num = max(
-# int(4 * 512 * 512 // process_width // process_height), generate_num
-# )
-# if USE_NEW_DIFFUSERS:
-# extra_kwargs["negative_prompt"] = negative_prompt
-# extra_kwargs["num_images_per_prompt"] = generate_num
-# if use_seed:
-# generator = torch.Generator(text2img.device).manual_seed(seed_val)
-# extra_kwargs["generator"] = generator
-# if nmask.sum() < 1 and enable_img2img:
-# init_image = Image.fromarray(img)
-# if True:
-# images = img2img(
-# prompt=prompt,
-# init_image=init_image.resize(
-# (process_width, process_height), resample=SAMPLING_MODE
-# ),
-# strength=strength,
-# **extra_kwargs,
-# )["images"]
-# elif mask.sum() > 0:
-# if fill_mode == "g_diffuser" and not self.inpainting_model:
-# mask = 255 - mask
-# mask = mask[:, :, np.newaxis].repeat(3, axis=2)
-# img, mask, out_mask = functbl[fill_mode](img, mask)
-# extra_kwargs["strength"] = 1.0
-# extra_kwargs["out_mask"] = Image.fromarray(out_mask)
-# inpaint_func = unified
-# else:
-# img, mask = functbl[fill_mode](img, mask)
-# mask = 255 - mask
-# mask = skimage.measure.block_reduce(mask, (8, 8), np.max)
-# mask = mask.repeat(8, axis=0).repeat(8, axis=1)
-# extra_kwargs["strength"] = strength
-# inpaint_func = inpaint
-# init_image = Image.fromarray(img)
-# mask_image = Image.fromarray(mask)
-# # mask_image=mask_image.filter(ImageFilter.GaussianBlur(radius = 8))
-# if True:
-# input_image = init_image.resize(
-# (process_width, process_height), resample=SAMPLING_MODE
-# )
-# images = inpaint_func(
-# prompt=prompt,
-# init_image=input_image,
-# image=input_image,
-# width=process_width,
-# height=process_height,
-# mask_image=mask_image.resize((process_width, process_height)),
-# **extra_kwargs,
-# )["images"]
-# else:
-# if True:
-# images = text2img(
-# prompt=prompt,
-# height=process_width,
-# width=process_height,
-# **extra_kwargs,
-# )["images"]
-# return images
-
-
-# # class StableDiffusion:
-# # def __init__(
-# # self,
-# # token: str = "",
-# # model_name: str = "runwayml/stable-diffusion-v1-5",
-# # model_path: str = None,
-# # inpainting_model: bool = False,
-# # **kwargs,
-# # ):
-# # self.token = token
-# # original_checkpoint = False
-# # if device=="cpu" and onnx_available:
-# # from diffusers import OnnxStableDiffusionPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionImg2ImgPipeline
-# # text2img = OnnxStableDiffusionPipeline.from_pretrained(
-# # model_name,
-# # revision="onnx",
-# # provider=onnx_providers[0] if onnx_providers else None
-# # )
-# # inpaint = OnnxStableDiffusionInpaintPipelineLegacy(
-# # vae_encoder=text2img.vae_encoder,
-# # vae_decoder=text2img.vae_decoder,
-# # text_encoder=text2img.text_encoder,
-# # tokenizer=text2img.tokenizer,
-# # unet=text2img.unet,
-# # scheduler=text2img.scheduler,
-# # safety_checker=text2img.safety_checker,
-# # feature_extractor=text2img.feature_extractor,
-# # )
-# # img2img = OnnxStableDiffusionImg2ImgPipeline(
-# # vae_encoder=text2img.vae_encoder,
-# # vae_decoder=text2img.vae_decoder,
-# # text_encoder=text2img.text_encoder,
-# # tokenizer=text2img.tokenizer,
-# # unet=text2img.unet,
-# # scheduler=text2img.scheduler,
-# # safety_checker=text2img.safety_checker,
-# # feature_extractor=text2img.feature_extractor,
-# # )
-# # else:
-# # if model_path and os.path.exists(model_path):
-# # if model_path.endswith(".ckpt"):
-# # original_checkpoint = True
-# # elif model_path.endswith(".json"):
-# # model_name = os.path.dirname(model_path)
-# # else:
-# # model_name = model_path
-# # vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse")
-# # if device == "cuda" and not args.fp32:
-# # vae.to(torch.float16)
-# # if original_checkpoint:
-# # print(f"Converting & Loading {model_path}")
-# # from convert_checkpoint import convert_checkpoint
-
-# # pipe = convert_checkpoint(model_path)
-# # if device == "cuda" and not args.fp32:
-# # pipe.to(torch.float16)
-# # text2img = StableDiffusionPipeline(
-# # vae=vae,
-# # text_encoder=pipe.text_encoder,
-# # tokenizer=pipe.tokenizer,
-# # unet=pipe.unet,
-# # scheduler=pipe.scheduler,
-# # safety_checker=pipe.safety_checker,
-# # feature_extractor=pipe.feature_extractor,
-# # )
-# # else:
-# # print(f"Loading {model_name}")
-# # if device == "cuda" and not args.fp32:
-# # text2img = StableDiffusionPipeline.from_pretrained(
-# # model_name,
-# # revision="fp16",
-# # torch_dtype=torch.float16,
-# # use_auth_token=token,
-# # vae=vae,
-# # )
-# # else:
-# # text2img = StableDiffusionPipeline.from_pretrained(
-# # model_name, use_auth_token=token, vae=vae
-# # )
-# # if inpainting_model:
-# # # can reduce vRAM by reusing models except unet
-# # text2img_unet = text2img.unet
-# # del text2img.vae
-# # del text2img.text_encoder
-# # del text2img.tokenizer
-# # del text2img.scheduler
-# # del text2img.safety_checker
-# # del text2img.feature_extractor
-# # import gc
-
-# # gc.collect()
-# # if device == "cuda" and not args.fp32:
-# # inpaint = StableDiffusionInpaintPipeline.from_pretrained(
-# # "runwayml/stable-diffusion-inpainting",
-# # revision="fp16",
-# # torch_dtype=torch.float16,
-# # use_auth_token=token,
-# # vae=vae,
-# # ).to(device)
-# # else:
-# # inpaint = StableDiffusionInpaintPipeline.from_pretrained(
-# # "runwayml/stable-diffusion-inpainting",
-# # use_auth_token=token,
-# # vae=vae,
-# # ).to(device)
-# # text2img_unet.to(device)
-# # text2img = StableDiffusionPipeline(
-# # vae=inpaint.vae,
-# # text_encoder=inpaint.text_encoder,
-# # tokenizer=inpaint.tokenizer,
-# # unet=text2img_unet,
-# # scheduler=inpaint.scheduler,
-# # safety_checker=inpaint.safety_checker,
-# # feature_extractor=inpaint.feature_extractor,
-# # )
-# # else:
-# # inpaint = StableDiffusionInpaintPipelineLegacy(
-# # vae=text2img.vae,
-# # text_encoder=text2img.text_encoder,
-# # tokenizer=text2img.tokenizer,
-# # unet=text2img.unet,
-# # scheduler=text2img.scheduler,
-# # safety_checker=text2img.safety_checker,
-# # feature_extractor=text2img.feature_extractor,
-# # ).to(device)
-# # text_encoder = text2img.text_encoder
-# # tokenizer = text2img.tokenizer
-# # if os.path.exists("./embeddings"):
-# # for item in os.listdir("./embeddings"):
-# # if item.endswith(".bin"):
-# # load_learned_embed_in_clip(
-# # os.path.join("./embeddings", item),
-# # text2img.text_encoder,
-# # text2img.tokenizer,
-# # )
-# # text2img.to(device)
-# # if device == "mps":
-# # _ = text2img("", num_inference_steps=1)
-# # img2img = StableDiffusionImg2ImgPipeline(
-# # vae=text2img.vae,
-# # text_encoder=text2img.text_encoder,
-# # tokenizer=text2img.tokenizer,
-# # unet=text2img.unet,
-# # scheduler=text2img.scheduler,
-# # safety_checker=text2img.safety_checker,
-# # feature_extractor=text2img.feature_extractor,
-# # ).to(device)
-# # scheduler_dict["PLMS"] = text2img.scheduler
-# # scheduler_dict["DDIM"] = prepare_scheduler(
-# # DDIMScheduler(
-# # beta_start=0.00085,
-# # beta_end=0.012,
-# # beta_schedule="scaled_linear",
-# # clip_sample=False,
-# # set_alpha_to_one=False,
-# # )
-# # )
-# # scheduler_dict["K-LMS"] = prepare_scheduler(
-# # LMSDiscreteScheduler(
-# # beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear"
-# # )
-# # )
-# # scheduler_dict["PNDM"] = prepare_scheduler(
-# # PNDMScheduler(
-# # beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear",
-# # skip_prk_steps=True
-# # )
-# # )
-# # scheduler_dict["DPM"] = prepare_scheduler(
-# # DPMSolverMultistepScheduler.from_config(text2img.scheduler.config)
-# # )
-# # self.safety_checker = text2img.safety_checker
-# # save_token(token)
-# # try:
-# # total_memory = torch.cuda.get_device_properties(0).total_memory // (
-# # 1024 ** 3
-# # )
-# # if total_memory <= 5 or args.lowvram:
-# # inpaint.enable_attention_slicing()
-# # inpaint.enable_sequential_cpu_offload()
-# # if inpainting_model:
-# # text2img.enable_attention_slicing()
-# # text2img.enable_sequential_cpu_offload()
-# # except:
-# # pass
-# # self.text2img = text2img
-# # self.inpaint = inpaint
-# # self.img2img = img2img
-# # if True:
-# # self.unified = inpaint
-# # else:
-# # self.unified = UnifiedPipeline(
-# # vae=text2img.vae,
-# # text_encoder=text2img.text_encoder,
-# # tokenizer=text2img.tokenizer,
-# # unet=text2img.unet,
-# # scheduler=text2img.scheduler,
-# # safety_checker=text2img.safety_checker,
-# # feature_extractor=text2img.feature_extractor,
-# # ).to(device)
-# # self.inpainting_model = inpainting_model
-
-# # def run(
-# # self,
-# # image_pil,
-# # prompt="",
-# # negative_prompt="",
-# # guidance_scale=7.5,
-# # resize_check=True,
-# # enable_safety=True,
-# # fill_mode="patchmatch",
-# # strength=0.75,
-# # step=50,
-# # enable_img2img=False,
-# # use_seed=False,
-# # seed_val=-1,
-# # generate_num=1,
-# # scheduler="",
-# # scheduler_eta=0.0,
-# # **kwargs,
-# # ):
-# # text2img, inpaint, img2img, unified = (
-# # self.text2img,
-# # self.inpaint,
-# # self.img2img,
-# # self.unified,
-# # )
-# # selected_scheduler = scheduler_dict.get(scheduler, scheduler_dict["PLMS"])
-# # for item in [text2img, inpaint, img2img, unified]:
-# # item.scheduler = selected_scheduler
-# # if enable_safety or self.safety_checker is None:
-# # item.safety_checker = self.safety_checker
-# # else:
-# # item.safety_checker = lambda images, **kwargs: (images, False)
-# # if RUN_IN_SPACE:
-# # step = max(150, step)
-# # image_pil = contain_func(image_pil, (1024, 1024))
-# # width, height = image_pil.size
-# # sel_buffer = np.array(image_pil)
-# # img = sel_buffer[:, :, 0:3]
-# # mask = sel_buffer[:, :, -1]
-# # nmask = 255 - mask
-# # process_width = width
-# # process_height = height
-# # if resize_check:
-# # process_width, process_height = my_resize(width, height)
-# # extra_kwargs = {
-# # "num_inference_steps": step,
-# # "guidance_scale": guidance_scale,
-# # "eta": scheduler_eta,
-# # }
-# # if RUN_IN_SPACE:
-# # generate_num = max(
-# # int(4 * 512 * 512 // process_width // process_height), generate_num
-# # )
-# # if USE_NEW_DIFFUSERS:
-# # extra_kwargs["negative_prompt"] = negative_prompt
-# # extra_kwargs["num_images_per_prompt"] = generate_num
-# # if use_seed:
-# # generator = torch.Generator(text2img.device).manual_seed(seed_val)
-# # extra_kwargs["generator"] = generator
-# # if nmask.sum() < 1 and enable_img2img:
-# # init_image = Image.fromarray(img)
-# # if True:
-# # images = img2img(
-# # prompt=prompt,
-# # image=init_image.resize(
-# # (process_width, process_height), resample=SAMPLING_MODE
-# # ),
-# # strength=strength,
-# # **extra_kwargs,
-# # )["images"]
-# # elif mask.sum() > 0:
-# # if fill_mode == "g_diffuser" and not self.inpainting_model:
-# # mask = 255 - mask
-# # mask = mask[:, :, np.newaxis].repeat(3, axis=2)
-# # img, mask = functbl[fill_mode](img, mask)
-# # extra_kwargs["strength"] = 1.0
-# # extra_kwargs["out_mask"] = Image.fromarray(mask)
-# # inpaint_func = unified
-# # else:
-# # img, mask = functbl[fill_mode](img, mask)
-# # mask = 255 - mask
-# # mask = skimage.measure.block_reduce(mask, (8, 8), np.max)
-# # mask = mask.repeat(8, axis=0).repeat(8, axis=1)
-# # inpaint_func = inpaint
-# # init_image = Image.fromarray(img)
-# # mask_image = Image.fromarray(mask)
-# # # mask_image=mask_image.filter(ImageFilter.GaussianBlur(radius = 8))
-# # input_image = init_image.resize(
-# # (process_width, process_height), resample=SAMPLING_MODE
-# # )
-# # if self.inpainting_model:
-# # images = inpaint_func(
-# # prompt=prompt,
-# # image=input_image,
-# # width=process_width,
-# # height=process_height,
-# # mask_image=mask_image.resize((process_width, process_height)),
-# # **extra_kwargs,
-# # )["images"]
-# # else:
-# # extra_kwargs["strength"] = strength
-# # if True:
-# # images = inpaint_func(
-# # prompt=prompt,
-# # image=input_image,
-# # mask_image=mask_image.resize((process_width, process_height)),
-# # **extra_kwargs,
-# # )["images"]
-# # else:
-# # if True:
-# # images = text2img(
-# # prompt=prompt,
-# # height=process_width,
-# # width=process_height,
-# # **extra_kwargs,
-# # )["images"]
-# # return images
-
-
-# def get_model(token="", model_choice="", model_path=""):
-# if "model" not in model:
-# model_name = ""
-# if args.local_model:
-# print(f"Using local_model: {args.local_model}")
-# model_path = args.local_model
-# elif args.remote_model:
-# print(f"Using remote_model: {args.remote_model}")
-# model_name = args.remote_model
-# if model_choice == ModelChoice.INPAINTING.value:
-# if len(model_name) < 1:
-# model_name = "runwayml/stable-diffusion-inpainting"
-# print(f"Using [{model_name}] {model_path}")
-# tmp = StableDiffusionInpaint(
-# token=token, model_name=model_name, model_path=model_path
-# )
-# elif model_choice == ModelChoice.INPAINTING2.value:
-# if len(model_name) < 1:
-# model_name = "stabilityai/stable-diffusion-2-inpainting"
-# print(f"Using [{model_name}] {model_path}")
-# tmp = StableDiffusionInpaint(
-# token=token, model_name=model_name, model_path=model_path
-# )
-# elif model_choice == ModelChoice.INPAINTING_IMG2IMG.value:
-# print(
-# f"Note that {ModelChoice.INPAINTING_IMG2IMG.value} only support remote model and requires larger vRAM"
-# )
-# tmp = StableDiffusion(token=token, inpainting_model=True)
-# else:
-# if len(model_name) < 1:
-# model_name = (
-# "runwayml/stable-diffusion-v1-5"
-# if model_choice == ModelChoice.MODEL_1_5.value
-# else "CompVis/stable-diffusion-v1-4"
-# )
-# if model_choice == ModelChoice.MODEL_2_0.value:
-# model_name = "stabilityai/stable-diffusion-2-base"
-# elif model_choice == ModelChoice.MODEL_2_0_V.value:
-# model_name = "stabilityai/stable-diffusion-2"
-# elif model_choice == ModelChoice.MODEL_2_1.value:
-# model_name = "stabilityai/stable-diffusion-2-1-base"
-# tmp = StableDiffusion(
-# token=token, model_name=model_name, model_path=model_path
-# )
-# model["model"] = tmp
-# return model["model"]
-
-
-# def run_outpaint(
-# sel_buffer_str,
-# prompt_text,
-# negative_prompt_text,
-# strength,
-# guidance,
-# step,
-# resize_check,
-# fill_mode,
-# enable_safety,
-# use_correction,
-# enable_img2img,
-# use_seed,
-# seed_val,
-# generate_num,
-# scheduler,
-# scheduler_eta,
-# state,
-# ):
-# data = base64.b64decode(str(sel_buffer_str))
-# pil = Image.open(io.BytesIO(data))
-# # if interrogate_mode:
-# # if "interrogator" not in model:
-# # model["interrogator"] = Interrogator()
-# # interrogator = model["interrogator"]
-# # # possible point to integrate
-# # img = np.array(pil)[:, :, 0:3]
-# # mask = np.array(pil)[:, :, -1]
-# # x, y = np.nonzero(mask)
-# # if len(x) > 0:
-# # x0, x1 = x.min(), x.max() + 1
-# # y0, y1 = y.min(), y.max() + 1
-# # img = img[x0:x1, y0:y1, :]
-# # pil = Image.fromarray(img)
-# # interrogate_ret = interrogator.interrogate(pil)
-# # return (
-# # gr.update(value=",".join([sel_buffer_str]),),
-# # gr.update(label="Prompt", value=interrogate_ret),
-# # state,
-# # )
-# width, height = pil.size
-# sel_buffer = np.array(pil)
-# cur_model = get_model()
-# images = cur_model.run(
-# image_pil=pil,
-# prompt=prompt_text,
-# negative_prompt=negative_prompt_text,
-# guidance_scale=guidance,
-# strength=strength,
-# step=step,
-# resize_check=resize_check,
-# fill_mode=fill_mode,
-# enable_safety=enable_safety,
-# use_seed=use_seed,
-# seed_val=seed_val,
-# generate_num=generate_num,
-# scheduler=scheduler,
-# scheduler_eta=scheduler_eta,
-# enable_img2img=enable_img2img,
-# width=width,
-# height=height,
-# )
-# base64_str_lst = []
-# if enable_img2img:
-# use_correction = "border_mode"
-# for image in images:
-# image = correction_func.run(pil.resize(image.size), image, mode=use_correction)
-# resized_img = image.resize((width, height), resample=SAMPLING_MODE,)
-# out = sel_buffer.copy()
-# out[:, :, 0:3] = np.array(resized_img)
-# out[:, :, -1] = 255
-# out_pil = Image.fromarray(out)
-# out_buffer = io.BytesIO()
-# out_pil.save(out_buffer, format="PNG")
-# out_buffer.seek(0)
-# base64_bytes = base64.b64encode(out_buffer.read())
-# base64_str = base64_bytes.decode("ascii")
-# base64_str_lst.append(base64_str)
-# return (
-# gr.update(label=str(state + 1), value=",".join(base64_str_lst),),
-# gr.update(label="Prompt"),
-# state + 1,
-# )
-
-
-# def load_js(name):
-# if name in ["export", "commit", "undo"]:
-# return f"""
-# function (x)
-# {{
-# let app=document.querySelector("gradio-app");
-# app=app.shadowRoot??app;
-# let frame=app.querySelector("#sdinfframe").contentWindow.document;
-# let button=frame.querySelector("#{name}");
-# button.click();
-# return x;
-# }}
-# """
-# ret = ""
-# with open(f"./js/{name}.js", "r") as f:
-# ret = f.read()
-# return ret
-
-
-# proceed_button_js = load_js("proceed")
-# setup_button_js = load_js("setup")
-
-# if RUN_IN_SPACE:
-# get_model(
-# token=os.environ.get("hftoken", ""),
-# model_choice=ModelChoice.INPAINTING_IMG2IMG.value,
-# )
-
-# blocks = gr.Blocks(
-# title="StableDiffusion-Infinity",
-# css="""
-# .tabs {
-# margin-top: 0rem;
-# margin-bottom: 0rem;
-# }
-# #markdown {
-# min-height: 0rem;
-# }
-# .contain {
-# display: flex;
-# align-items: center;
-# }
-# """,
-# theme=gr.themes.Soft()
-# )
-# model_path_input_val = ""
-# with blocks as demo:
-# # # title
-# # title = gr.Markdown(
-# # """
-# # stanley capstone
-# # """,
-# # elem_id="markdown",
-# # )
-# # # github logo
-# # github_logo = gr.HTML(
-# # """
-# #
-# #
-# #
-# # """
-# # )
-# # frame
-# frame = gr.HTML(test(2), visible=RUN_IN_SPACE)
-# # setup
-
-# setup_button = gr.Button("Click to Start", variant="primary")
-
-
-# if not RUN_IN_SPACE:
-# model_choices_lst = [item.value for item in ModelChoice]
-# if args.local_model:
-# model_path_input_val = args.local_model
-# # model_choices_lst.insert(0, "local_model")
-# elif args.remote_model:
-# model_path_input_val = args.remote_model
-# model_choices_lst.insert(0, "remote_model")
-
-# sd_prompt = gr.Textbox(
-# label="Prompt", placeholder="input your prompt here!", lines=2
-# )
-# with gr.Accordion("machine learning tools", open=False):
-# with gr.Row(elem_id="setup_row"):
-# with gr.Column(scale=4, min_width=350):
-# token = gr.Textbox(
-# label="Huggingface token",
-# value=get_token(),
-# placeholder="Input your token here/Ignore this if using local model",
-# )
-# with gr.Column(scale=3, min_width=320):
-# model_selection = gr.Radio(
-# label="Choose a model type here",
-# choices=model_choices_lst,
-# value=ModelChoice.INPAINTING.value if onnx_available else ModelChoice.INPAINTING2.value,
-# )
-# with gr.Column(scale=1, min_width=100):
-# canvas_width = gr.Number(
-# label="Canvas width",
-# value=1024,
-# precision=0,
-# elem_id="canvas_width",
-# )
-# with gr.Column(scale=1, min_width=100):
-# canvas_height = gr.Number(
-# label="Canvas height",
-# value=700,
-# precision=0,
-# elem_id="canvas_height",
-# )
-# with gr.Column(scale=1, min_width=100):
-# selection_size = gr.Number(
-# label="Selection box size",
-# value=256,
-# precision=0,
-# elem_id="selection_size",
-# )
-# with gr.Column(scale=3, min_width=270):
-# init_mode = gr.Dropdown(
-# label="Init Mode",
-# choices=[
-# "patchmatch",
-# "edge_pad",
-# "cv2_ns",
-# "cv2_telea",
-# "perlin",
-# "gaussian",
-# "g_diffuser",
-# ],
-# value="patchmatch",
-# type="value",
-# )
-# postprocess_check = gr.Radio(
-# label="Photometric Correction Mode",
-# choices=["disabled", "mask_mode", "border_mode",],
-# value="disabled",
-# type="value",
-# )
-# # canvas control
-
-# with gr.Column(scale=3, min_width=270):
-# sd_negative_prompt = gr.Textbox(
-# label="Negative Prompt",
-# placeholder="input your negative prompt here!",
-# lines=2,
-# )
-# with gr.Column(scale=2, min_width=150):
-# with gr.Group():
-# with gr.Row():
-# sd_generate_num = gr.Number(
-# label="Sample number", value=1, precision=0
-# )
-# sd_strength = gr.Slider(
-# label="Strength",
-# minimum=0.0,
-# maximum=1.0,
-# value=1.0,
-# step=0.01,
-# )
-# with gr.Row():
-# sd_scheduler = gr.Dropdown(
-# list(scheduler_dict.keys()), label="Scheduler", value="DPM"
-# )
-# sd_scheduler_eta = gr.Number(label="Eta", value=0.0)
-# with gr.Column(scale=1, min_width=80):
-# sd_step = gr.Number(label="Step", value=25, precision=0)
-# sd_guidance = gr.Number(label="Guidance", value=7.5)
-
-# model_path_input = gr.Textbox(
-# value=model_path_input_val,
-# label="Custom Model Path (You have to select a correct model type for your local model)",
-# placeholder="Ignore this if you are not using Docker",
-# elem_id="model_path_input",
-# )
-
-# proceed_button = gr.Button("Proceed", elem_id="proceed", visible=DEBUG_MODE)
-# xss_js = load_js("xss").replace("\n", " ")
-# xss_html = gr.HTML(
-# value=f"""
-#
""",
-# visible=False,
-# )
-# xss_keyboard_js = load_js("keyboard").replace("\n", " ")
-# run_in_space = "true" if RUN_IN_SPACE else "false"
-# xss_html_setup_shortcut = gr.HTML(
-# value=f"""
-#
""",
-# visible=False,
-# )
-# # sd pipeline parameters
-# sd_img2img = gr.Checkbox(label="Enable Img2Img", value=False, visible=False)
-# sd_resize = gr.Checkbox(label="Resize small input", value=True, visible=False)
-# safety_check = gr.Checkbox(label="Enable Safety Checker", value=True, visible=False)
-# interrogate_check = gr.Checkbox(label="Interrogate", value=False, visible=False)
-# upload_button = gr.Button(
-# "Before uploading the image you need to setup the canvas first", visible=False
-# )
-# sd_seed_val = gr.Number(label="Seed", value=0, precision=0, visible=False)
-# sd_use_seed = gr.Checkbox(label="Use seed", value=False, visible=False)
-# model_output = gr.Textbox(visible=DEBUG_MODE, elem_id="output", label="0")
-# model_input = gr.Textbox(visible=DEBUG_MODE, elem_id="input", label="Input")
-# upload_output = gr.Textbox(visible=DEBUG_MODE, elem_id="upload", label="0")
-# model_output_state = gr.State(value=0)
-# upload_output_state = gr.State(value=0)
-# cancel_button = gr.Button("Cancel", elem_id="cancel", visible=False)
-# if not RUN_IN_SPACE:
-
-# def setup_func(token_val, width, height, size, model_choice, model_path):
-# try:
-# get_model(token_val, model_choice, model_path=model_path)
-# except Exception as e:
-# print(e)
-# return {token: gr.update(value=str(e))}
-# if model_choice in [
-# ModelChoice.INPAINTING.value,
-# ModelChoice.INPAINTING_IMG2IMG.value,
-# ModelChoice.INPAINTING2.value,
-# ]:
-# init_val = "cv2_ns"
-# else:
-# init_val = "patchmatch"
-# return {
-# token: gr.update(visible=False),
-# canvas_width: gr.update(visible=False),
-# canvas_height: gr.update(visible=False),
-# selection_size: gr.update(visible=False),
-# setup_button: gr.update(visible=False),
-# frame: gr.update(visible=True),
-# upload_button: gr.update(value="Upload Image"),
-# model_selection: gr.update(visible=False),
-# model_path_input: gr.update(visible=False),
-# init_mode: gr.update(value=init_val),
-# }
-
-# setup_button.click(
-# fn=setup_func,
-# inputs=[
-# token,
-# canvas_width,
-# canvas_height,
-# selection_size,
-# model_selection,
-# model_path_input,
-# ],
-# outputs=[
-# token,
-# canvas_width,
-# canvas_height,
-# selection_size,
-# setup_button,
-# frame,
-# upload_button,
-# model_selection,
-# model_path_input,
-# init_mode,
-# ],
-# _js=setup_button_js,
-# )
-
-# proceed_event = proceed_button.click(
-# fn=run_outpaint,
-# inputs=[
-# model_input,
-# sd_prompt,
-# sd_negative_prompt,
-# sd_strength,
-# sd_guidance,
-# sd_step,
-# sd_resize,
-# init_mode,
-# safety_check,
-# postprocess_check,
-# sd_img2img,
-# sd_use_seed,
-# sd_seed_val,
-# sd_generate_num,
-# sd_scheduler,
-# sd_scheduler_eta,
-# model_output_state,
-# ],
-# outputs=[model_output, sd_prompt, model_output_state],
-# _js=proceed_button_js,
-# )
-# # cancel button can also remove error overlay
-# if tuple(map(int,gr.__version__.split("."))) >= (3,6):
-# cancel_button.click(fn=None, inputs=None, outputs=None, cancels=[proceed_event])
-
-
-# launch_extra_kwargs = {
-# "show_error": True,
-# # "favicon_path": ""
-# }
-# launch_kwargs = vars(args)
-# launch_kwargs = {k: v for k, v in launch_kwargs.items() if v is not None}
-# launch_kwargs.pop("remote_model", None)
-# launch_kwargs.pop("local_model", None)
-# launch_kwargs.pop("fp32", None)
-# launch_kwargs.pop("lowvram", None)
-# launch_kwargs.update(launch_extra_kwargs)
-# try:
-# import google.colab
-
-# launch_kwargs["debug"] = True
-# except:
-# pass
-
-# if RUN_IN_SPACE:
-# demo.launch()
-# elif args.debug:
-# launch_kwargs["server_name"] = "0.0.0.0"
-# demo.queue().launch(**launch_kwargs)
-# # demo.queue().launch(share=True)
-
-# else:
-# demo.queue().launch(**launch_kwargs)
-# # demo.queue().launch(share=True)
-
-
-
-
import subprocess
-# import os.path as osp
import pip
-# pip.main(["install","-v","-U","git+https://github.com/facebookresearch/xformers.git@main#egg=xformers"])
-# subprocess.check_call("pip install -v -U git+https://github.com/facebookresearch/xformers.git@main#egg=xformers", cwd=osp.dirname(__file__), shell=True)
import io
import base64
@@ -1556,6 +10,11 @@ import numpy as np
import torch
from torch import autocast
import diffusers
+import requests
+
+
+assert tuple(map(int,diffusers.__version__.split("."))) >= (0,9,0), "Please upgrade diffusers to 0.9.0"
+
from diffusers.configuration_utils import FrozenDict
from diffusers import (
StableDiffusionPipeline,
@@ -1564,8 +23,10 @@ from diffusers import (
StableDiffusionInpaintPipelineLegacy,
DDIMScheduler,
LMSDiscreteScheduler,
+ DiffusionPipeline,
StableDiffusionUpscalePipeline,
- DPMSolverMultistepScheduler
+ DPMSolverMultistepScheduler,
+ PNDMScheduler,
)
from diffusers.models import AutoencoderKL
from PIL import Image
@@ -1577,6 +38,20 @@ import skimage.measure
import yaml
import json
from enum import Enum
+from utils import *
+
+# load environment variables from the .env file
+if os.path.exists(".env"):
+ with open(".env") as f:
+ for line in f:
+ if line.startswith("#") or not line.strip():
+ continue
+ name, value = line.strip().split("=", 1)
+ os.environ[name] = value
+
+
+# access_token = os.environ.get("HF_ACCESS_TOKEN")
+# print("access_token from HF 1:", access_token)
try:
abspath = os.path.abspath(__file__)
@@ -1585,9 +60,6 @@ try:
except:
pass
-from utils import *
-
-assert diffusers.__version__ >= "0.6.0", "Please upgrade diffusers to 0.6.0"
USE_NEW_DIFFUSERS = True
RUN_IN_SPACE = "RUN_IN_HG_SPACE" in os.environ
@@ -1595,9 +67,13 @@ RUN_IN_SPACE = "RUN_IN_HG_SPACE" in os.environ
class ModelChoice(Enum):
INPAINTING = "stablediffusion-inpainting"
- INPAINTING_IMG2IMG = "stablediffusion-inpainting+img2img-v1.5"
- MODEL_1_5 = "stablediffusion-v1.5"
- MODEL_1_4 = "stablediffusion-v1.4"
+ INPAINTING2 = "stablediffusion-2-inpainting"
+ INPAINTING_IMG2IMG = "stablediffusion-inpainting+img2img-1.5"
+ MODEL_2_1 = "stablediffusion-2.1"
+ MODEL_2_0_V = "stablediffusion-2.0v"
+ MODEL_2_0 = "stablediffusion-2.0"
+ MODEL_1_5 = "stablediffusion-1.5"
+ MODEL_1_4 = "stablediffusion-1.4"
try:
@@ -1613,6 +89,41 @@ USE_GLID = False
# except:
# USE_GLID = False
+# ******** ORIGINAL ***********
+# try:
+# import onnxruntime
+# onnx_available = True
+# onnx_providers = ["CUDAExecutionProvider", "DmlExecutionProvider", "OpenVINOExecutionProvider", 'CPUExecutionProvider']
+# available_providers = onnxruntime.get_available_providers()
+# onnx_providers = [item for item in onnx_providers if item in available_providers]
+# except:
+# onnx_available = False
+# onnx_providers = []
+
+
+# try:
+# cuda_available = torch.cuda.is_available()
+# except:
+# cuda_available = False
+# finally:
+# if sys.platform == "darwin":
+# device = "mps" if torch.backends.mps.is_available() else "cpu"
+# elif cuda_available:
+# device = "cuda"
+# else:
+# device = "cpu"
+
+# if device != "cuda":
+# import contextlib
+
+# autocast = contextlib.nullcontext
+
+# with open("config.yaml", "r") as yaml_in:
+# yaml_object = yaml.safe_load(yaml_in)
+# config_json = json.dumps(yaml_object)
+
+# ******** ^ ORIGINAL ^ ***********
+
try:
cuda_available = torch.cuda.is_available()
except:
@@ -1634,6 +145,8 @@ with open("config.yaml", "r") as yaml_in:
config_json = json.dumps(yaml_object)
+# new ^
+
def load_html():
body, canvaspy = "", ""
with open("index.html", encoding="utf8") as f:
@@ -1648,7 +161,7 @@ def load_html():
def test(x):
x = load_html()
- return f"""