Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
# Path to the fine-tuned model
|
5 |
+
model_path = "stas-l/Ukr-Lit-SP"
|
6 |
+
|
7 |
+
# Load tokenizer and model
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained("malteos/gpt2-uk")
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(model_path)
|
10 |
+
|
11 |
+
# Initialize pipeline
|
12 |
+
generation_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
13 |
+
|
14 |
+
# Function for Q&A style response
|
15 |
+
def question_answer(user_input):
|
16 |
+
# Pass only the user input as the prompt
|
17 |
+
result = generation_pipeline(
|
18 |
+
user_input,
|
19 |
+
max_length=120,
|
20 |
+
num_return_sequences=1,
|
21 |
+
pad_token_id=tokenizer.eos_token_id
|
22 |
+
)
|
23 |
+
# Return the generated response
|
24 |
+
return result[0]["generated_text"].strip()
|
25 |
+
|
26 |
+
# Gradio Interface
|
27 |
+
iface = gr.Interface(
|
28 |
+
fn=question_answer,
|
29 |
+
inputs="text",
|
30 |
+
outputs="text",
|
31 |
+
title="GPT-2 Ukrainian Q&A",
|
32 |
+
description="Задайте будь-яке питання, і модель відповість."
|
33 |
+
)
|
34 |
+
|
35 |
+
# Launch interface
|
36 |
+
iface.launch()
|