from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline import gradio as gr # Path to the fine-tuned model model_path = "stas-l/Ukr-Lit-SP" # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained("malteos/gpt2-uk") model = AutoModelForCausalLM.from_pretrained(model_path) # Initialize pipeline generation_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer) # Function for Q&A style response def question_answer(user_input): # Pass only the user input as the prompt result = generation_pipeline( user_input, max_length=120, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id ) # Return the generated response return result[0]["generated_text"].strip() # Gradio Interface iface = gr.Interface( fn=question_answer, inputs="text", outputs="text", title="GPT-2 Ukrainian Q&A", description="Задайте будь-яке питання, і модель відповість." ) # Launch interface iface.launch()