Spaces:
Runtime error
Runtime error
File size: 8,906 Bytes
e5e58b2 b78ba90 00dae4f b78ba90 00dae4f e5e58b2 b8c5deb e5e58b2 00dae4f e5e58b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import re
import os
import yaml
import tempfile
import subprocess
from pathlib import Path
import spaces
import gradio as gr
import torch
from src.flux.xflux_pipeline import XFluxPipeline
import os
from huggingface_hub import login
hf_token = os.getenv("HF_TOKEN")
if hf_token:
login(token=hf_token)
else:
print("No Hugging Face token found.")
def list_dirs(path):
if path is None or path == "None" or path == "":
return
if not os.path.exists(path):
path = os.path.dirname(path)
if not os.path.exists(path):
return
if not os.path.isdir(path):
path = os.path.dirname(path)
def natural_sort_key(s, regex=re.compile("([0-9]+)")):
return [
int(text) if text.isdigit() else text.lower() for text in regex.split(s)
]
subdirs = [
(item, os.path.join(path, item))
for item in os.listdir(path)
if os.path.isdir(os.path.join(path, item))
]
subdirs = [
filename
for item, filename in subdirs
if item[0] != "." and item not in ["__pycache__"]
]
subdirs = sorted(subdirs, key=natural_sort_key)
if os.path.dirname(path) != "":
dirs = [os.path.dirname(path), path] + subdirs
else:
dirs = [path] + subdirs
if os.sep == "\\":
dirs = [d.replace("\\", "/") for d in dirs]
for d in dirs:
yield d
def list_train_data_dirs():
current_train_data_dir = "."
return list(list_dirs(current_train_data_dir))
def update_config(d, u):
for k, v in u.items():
if isinstance(v, dict):
d[k] = update_config(d.get(k, {}), v)
else:
# convert Gradio components to strings
if hasattr(v, 'value'):
d[k] = str(v.value)
else:
try:
d[k] = int(v)
except (TypeError, ValueError):
d[k] = str(v)
return d
def start_lora_training(
data_dir: str, output_dir: str, lr: float, steps: int, rank: int
):
inputs = {
"data_config": {
"img_dir": data_dir,
},
"output_dir": output_dir,
"learning_rate": lr,
"rank": rank,
"max_train_steps": steps,
}
if not os.path.exists(output_dir):
os.makedirs(output_dir)
print(f"Creating folder {output_dir} for the output checkpoint file...")
script_path = Path(__file__).resolve()
config_path = script_path.parent / "train_configs" / "test_lora.yaml"
with open(config_path, 'r') as file:
config = yaml.safe_load(file)
config = update_config(config, inputs)
print("Config file is updated...", config)
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix=".yaml") as temp_file:
yaml.dump(config, temp_file, default_flow_style=False)
tmp_config_path = temp_file.name
command = ["accelerate", "launch", "train_flux_lora_deepspeed.py", "--config", tmp_config_path]
result = subprocess.run(command, check=True)
# rRemove the temporary file after the command is run
Path(tmp_config_path).unlink()
return result
def create_demo(
model_type: str,
device: str = "cuda" if torch.cuda.is_available() else "cpu",
offload: bool = False,
ckpt_dir: str = "",
):
xflux_pipeline = XFluxPipeline(model_type, device, offload)
checkpoints = sorted(Path(ckpt_dir).glob("*.safetensors"))
with gr.Blocks() as demo:
gr.Markdown(f"# Flux Adapters by XLabs AI - Model: {model_type}")
with gr.Tab("Inference"):
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", value="handsome woman in the city")
with gr.Accordion("Generation Options", open=False):
with gr.Row():
width = gr.Slider(512, 2048, 1024, step=16, label="Width")
height = gr.Slider(512, 2048, 1024, step=16, label="Height")
neg_prompt = gr.Textbox(label="Negative Prompt", value="bad photo")
with gr.Row():
num_steps = gr.Slider(1, 50, 25, step=1, label="Number of steps")
timestep_to_start_cfg = gr.Slider(1, 50, 1, step=1, label="timestep_to_start_cfg")
with gr.Row():
guidance = gr.Slider(1.0, 5.0, 4.0, step=0.1, label="Guidance", interactive=True)
true_gs = gr.Slider(1.0, 5.0, 3.5, step=0.1, label="True Guidance", interactive=True)
seed = gr.Textbox(-1, label="Seed (-1 for random)")
with gr.Accordion("ControlNet Options", open=False):
control_type = gr.Dropdown(["canny", "hed", "depth"], label="Control type")
control_weight = gr.Slider(0.0, 1.0, 0.8, step=0.1, label="Controlnet weight", interactive=True)
local_path = gr.Dropdown(checkpoints, label="Controlnet Checkpoint",
info="Local Path to Controlnet weights (if no, it will be downloaded from HF)"
)
controlnet_image = gr.Image(label="Input Controlnet Image", visible=True, interactive=True)
with gr.Accordion("LoRA Options", open=False):
lora_weight = gr.Slider(0.0, 1.0, 0.9, step=0.1, label="LoRA weight", interactive=True)
lora_local_path = gr.Dropdown(
checkpoints, label="LoRA Checkpoint", info="Local Path to Lora weights"
)
with gr.Accordion("IP Adapter Options", open=False):
image_prompt = gr.Image(label="image_prompt", visible=True, interactive=True)
ip_scale = gr.Slider(0.0, 1.0, 1.0, step=0.1, label="ip_scale")
neg_image_prompt = gr.Image(label="neg_image_prompt", visible=True, interactive=True)
neg_ip_scale = gr.Slider(0.0, 1.0, 1.0, step=0.1, label="neg_ip_scale")
ip_local_path = gr.Dropdown(
checkpoints, label="IP Adapter Checkpoint",
info="Local Path to IP Adapter weights (if no, it will be downloaded from HF)"
)
generate_btn = gr.Button("Generate")
with gr.Column():
output_image = gr.Image(label="Generated Image")
download_btn = gr.File(label="Download full-resolution")
inputs = [prompt, image_prompt, controlnet_image, width, height, guidance,
num_steps, seed, true_gs, ip_scale, neg_ip_scale, neg_prompt,
neg_image_prompt, timestep_to_start_cfg, control_type, control_weight,
lora_weight, local_path, lora_local_path, ip_local_path
]
generate_btn.click(
fn=xflux_pipeline.gradio_generate,
inputs=inputs,
outputs=[output_image, download_btn],
)
with gr.Tab("LoRA Finetuning"):
data_dir = gr.Dropdown(list_train_data_dirs(),
label="Training images (directory containing the training images)"
)
output_dir = gr.Textbox(label="Output Path", value="lora_checkpoint")
with gr.Accordion("Training Options", open=True):
lr = gr.Textbox(label="Learning Rate", value="1e-5")
steps = gr.Slider(10000, 20000, 20000, step=100, label="Train Steps")
rank = gr.Slider(1, 100, 16, step=1, label="LoRa Rank")
training_btn = gr.Button("Start training")
training_btn.click(
fn=start_lora_training,
inputs=[data_dir, output_dir, lr, steps, rank],
outputs=[],
)
return demo
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Flux")
parser.add_argument("--name", type=str, default="flux-dev", help="Model name")
parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu", help="Device to use")
parser.add_argument("--offload", action="store_true", help="Offload model to CPU when not in use")
parser.add_argument("--share", action="store_true", help="Create a public link to your demo")
parser.add_argument("--ckpt_dir", type=str, default=".", help="Folder with checkpoints in safetensors format")
args = parser.parse_args()
demo = create_demo(args.name, args.device, args.offload, args.ckpt_dir)
demo.launch(share=args.share)
|