File size: 14,256 Bytes
e5e58b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d15adcf
6e66743
 
e5e58b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d15adcf
e5e58b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
from PIL import Image, ExifTags
import numpy as np
import torch
from torch import Tensor

from einops import rearrange
import uuid
import os

from src.flux.modules.layers import (
    SingleStreamBlockProcessor,
    DoubleStreamBlockProcessor,
    SingleStreamBlockLoraProcessor,
    DoubleStreamBlockLoraProcessor,
    IPDoubleStreamBlockProcessor,
    ImageProjModel,
)
from src.flux.sampling import denoise, denoise_controlnet, get_noise, get_schedule, prepare, unpack
from src.flux.util import (
    load_ae,
    load_clip,
    load_flow_model,
    load_t5,
    load_controlnet,
    load_flow_model_quintized,
    Annotator,
    get_lora_rank,
    load_checkpoint
)

from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
import spaces


class XFluxPipeline:
    def __init__(self, model_type, device, offload: bool = False):
        self.device = torch.device(device)
        self.offload = offload
        self.model_type = model_type

        self.clip = load_clip(self.device)
        self.t5 = load_t5(self.device, max_length=512)
        self.ae = load_ae(model_type, device="cpu" if offload else self.device)
        if "fp8" in model_type:
            self.model = load_flow_model_quintized(model_type, device="cpu" if offload else self.device)
        else:
            self.model = load_flow_model(model_type, device="cpu" if offload else self.device)

        self.image_encoder_path = "openai/clip-vit-large-patch14"
        self.hf_lora_collection = "XLabs-AI/flux-lora-collection"
        self.lora_types_to_names = {
            "realism": "lora.safetensors",
        }
        self.controlnet_loaded = False
        self.ip_loaded = False

    def set_ip(self, local_path: str = None, repo_id = None, name: str = None):
        self.model.to(self.device)

        # unpack checkpoint
        checkpoint = load_checkpoint(local_path, repo_id, name)
        prefix = "double_blocks."
        blocks = {}
        proj = {}

        for key, value in checkpoint.items():
            if key.startswith(prefix):
                blocks[key[len(prefix):].replace('.processor.', '.')] = value
            if key.startswith("ip_adapter_proj_model"):
                proj[key[len("ip_adapter_proj_model."):]] = value

        # load image encoder
        self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(
            self.device, dtype=torch.float16
        )
        self.clip_image_processor = CLIPImageProcessor()

        # setup image embedding projection model
        self.improj = ImageProjModel(4096, 768, 4)
        self.improj.load_state_dict(proj)
        self.improj = self.improj.to(self.device, dtype=torch.bfloat16)

        ip_attn_procs = {}

        for name, _ in self.model.attn_processors.items():
            ip_state_dict = {}
            for k in checkpoint.keys():
                if name in k:
                    ip_state_dict[k.replace(f'{name}.', '')] = checkpoint[k]
            if ip_state_dict:
                ip_attn_procs[name] = IPDoubleStreamBlockProcessor(4096, 3072)
                ip_attn_procs[name].load_state_dict(ip_state_dict)
                ip_attn_procs[name].to(self.device, dtype=torch.bfloat16)
            else:
                ip_attn_procs[name] = self.model.attn_processors[name]

        self.model.set_attn_processor(ip_attn_procs)
        self.ip_loaded = True

    def set_lora(self, local_path: str = None, repo_id: str = None,
                 name: str = None, lora_weight: int = 0.7):
        checkpoint = load_checkpoint(local_path, repo_id, name)
        self.update_model_with_lora(checkpoint, lora_weight)

    def set_lora_from_collection(self, lora_type: str = "realism", lora_weight: int = 0.7):
        checkpoint = load_checkpoint(
            None, self.hf_lora_collection, self.lora_types_to_names[lora_type]
        )
        self.update_model_with_lora(checkpoint, lora_weight)

    def update_model_with_lora(self, checkpoint, lora_weight):
        rank = get_lora_rank(checkpoint)
        lora_attn_procs = {}

        for name, _ in self.model.attn_processors.items():
            lora_state_dict = {}
            for k in checkpoint.keys():
                if name in k:
                    lora_state_dict[k[len(name) + 1:]] = checkpoint[k] * lora_weight

            if len(lora_state_dict):
                if name.startswith("single_blocks"):
                    lora_attn_procs[name] = SingleStreamBlockLoraProcessor(dim=3072, rank=rank)
                else:
                    lora_attn_procs[name] = DoubleStreamBlockLoraProcessor(dim=3072, rank=rank)
                lora_attn_procs[name].load_state_dict(lora_state_dict)
                lora_attn_procs[name].to(self.device)
            else:
                if name.startswith("single_blocks"):
                    lora_attn_procs[name] = SingleStreamBlockProcessor()
                else:
                    lora_attn_procs[name] = DoubleStreamBlockProcessor()

        self.model.set_attn_processor(lora_attn_procs)

    def set_controlnet(self, control_type: str, local_path: str = None, repo_id: str = None, name: str = None):
        self.model.to(self.device)
        self.controlnet = load_controlnet(self.model_type, self.device).to(torch.bfloat16)

        checkpoint = load_checkpoint(local_path, repo_id, name)
        self.controlnet.load_state_dict(checkpoint, strict=False)
        self.annotator = Annotator(control_type, self.device)
        self.controlnet_loaded = True
        self.control_type = control_type

    def get_image_proj(
        self,
        image_prompt: Tensor,
    ):
        # encode image-prompt embeds
        image_prompt = self.clip_image_processor(
            images=image_prompt,
            return_tensors="pt"
        ).pixel_values
        image_prompt = image_prompt.to(self.image_encoder.device)
        image_prompt_embeds = self.image_encoder(
            image_prompt
        ).image_embeds.to(
            device=self.device, dtype=torch.bfloat16,
        )
        # encode image
        image_proj = self.improj(image_prompt_embeds)
        return image_proj

    @spaces.GPU
    def __call__(self,
                 prompt: str,
                 image_prompt: Image = None,
                 controlnet_image: Image = None,
                 width: int = 512,
                 height: int = 512,
                 guidance: float = 4,
                 num_steps: int = 50,
                 seed: int = 123456789,
                 true_gs: float = 3,
                 control_weight: float = 0.9,
                 ip_scale: float = 1.0,
                 neg_ip_scale: float = 1.0,
                 neg_prompt: str = '',
                 neg_image_prompt: Image = None,
                 timestep_to_start_cfg: int = 0,
                 ):
        width = 16 * (width // 16)
        height = 16 * (height // 16)
        image_proj = None
        neg_image_proj = None
        if not (image_prompt is None and neg_image_prompt is None) :
            assert self.ip_loaded, 'You must setup IP-Adapter to add image prompt as input'

            if image_prompt is None:
                image_prompt = np.zeros((width, height, 3), dtype=np.uint8)
            if neg_image_prompt is None:
                neg_image_prompt = np.zeros((width, height, 3), dtype=np.uint8)

            image_proj = self.get_image_proj(image_prompt)
            neg_image_proj = self.get_image_proj(neg_image_prompt)

        if self.controlnet_loaded:
            controlnet_image = self.annotator(controlnet_image, width, height)
            controlnet_image = torch.from_numpy((np.array(controlnet_image) / 127.5) - 1)
            controlnet_image = controlnet_image.permute(
                2, 0, 1).unsqueeze(0).to(torch.bfloat16).to(self.device)

        return self.forward(
            prompt,
            width,
            height,
            guidance,
            num_steps,
            seed,
            controlnet_image,
            timestep_to_start_cfg=timestep_to_start_cfg,
            true_gs=true_gs,
            control_weight=control_weight,
            neg_prompt=neg_prompt,
            image_proj=image_proj,
            neg_image_proj=neg_image_proj,
            ip_scale=ip_scale,
            neg_ip_scale=neg_ip_scale,
        )

    @torch.inference_mode()
    def gradio_generate(self, prompt, image_prompt, controlnet_image, width, height, guidance,
                        num_steps, seed, true_gs, ip_scale, neg_ip_scale, neg_prompt,
                        neg_image_prompt, timestep_to_start_cfg, control_type, control_weight,
                        lora_weight, local_path, lora_local_path, ip_local_path):
        if controlnet_image is not None:
            controlnet_image = Image.fromarray(controlnet_image)
            if ((self.controlnet_loaded and control_type != self.control_type)
                or not self.controlnet_loaded):
                if local_path is not None:
                    self.set_controlnet(control_type, local_path=local_path)
                else:
                    self.set_controlnet(control_type, local_path=None,
                                        repo_id=f"xlabs-ai/flux-controlnet-{control_type}-v3",
                                        name=f"flux-{control_type}-controlnet-v3.safetensors")
        if lora_local_path is not None:
            self.set_lora(local_path=lora_local_path, lora_weight=lora_weight)
        if image_prompt is not None:
            image_prompt = Image.fromarray(image_prompt)
            if neg_image_prompt is not None:
                neg_image_prompt = Image.fromarray(neg_image_prompt)
            if not self.ip_loaded:
                if ip_local_path is not None:
                    self.set_ip(local_path=ip_local_path)
                else:
                    self.set_ip(repo_id="xlabs-ai/flux-ip-adapter",
                                name="flux-ip-adapter.safetensors")
        seed = int(seed)
        if seed == -1:
            seed = torch.Generator(device="cpu").seed()

        img = self(prompt, image_prompt, controlnet_image, width, height, guidance,
                   num_steps, seed, true_gs, control_weight, ip_scale, neg_ip_scale, neg_prompt,
                   neg_image_prompt, timestep_to_start_cfg)

        filename = f"output/gradio/{uuid.uuid4()}.jpg"
        os.makedirs(os.path.dirname(filename), exist_ok=True)
        exif_data = Image.Exif()
        exif_data[ExifTags.Base.Make] = "XLabs AI"
        exif_data[ExifTags.Base.Model] = self.model_type
        img.save(filename, format="jpeg", exif=exif_data, quality=95, subsampling=0)
        return img, filename

    def forward(
        self,
        prompt,
        width,
        height,
        guidance,
        num_steps,
        seed,
        controlnet_image = None,
        timestep_to_start_cfg = 0,
        true_gs = 3.5,
        control_weight = 0.9,
        neg_prompt="",
        image_proj=None,
        neg_image_proj=None,
        ip_scale=1.0,
        neg_ip_scale=1.0,
    ):
        x = get_noise(
            1, height, width, device=self.device,
            dtype=torch.bfloat16, seed=seed
        )
        timesteps = get_schedule(
            num_steps,
            (width // 8) * (height // 8) // (16 * 16),
            shift=True,
        )
        torch.manual_seed(seed)
        with torch.no_grad():
            if self.offload:
                self.t5, self.clip = self.t5.to(self.device), self.clip.to(self.device)
            inp_cond = prepare(t5=self.t5, clip=self.clip, img=x, prompt=prompt)
            neg_inp_cond = prepare(t5=self.t5, clip=self.clip, img=x, prompt=neg_prompt)

            if self.offload:
                self.offload_model_to_cpu(self.t5, self.clip)
                self.model = self.model.to(self.device)
            if self.controlnet_loaded:
                x = denoise_controlnet(
                    self.model,
                    **inp_cond,
                    controlnet=self.controlnet,
                    timesteps=timesteps,
                    guidance=guidance,
                    controlnet_cond=controlnet_image,
                    timestep_to_start_cfg=timestep_to_start_cfg,
                    neg_txt=neg_inp_cond['txt'],
                    neg_txt_ids=neg_inp_cond['txt_ids'],
                    neg_vec=neg_inp_cond['vec'],
                    true_gs=true_gs,
                    controlnet_gs=control_weight,
                    image_proj=image_proj,
                    neg_image_proj=neg_image_proj,
                    ip_scale=ip_scale,
                    neg_ip_scale=neg_ip_scale,
                )
            else:
                x = denoise(
                    self.model,
                    **inp_cond,
                    timesteps=timesteps,
                    guidance=guidance,
                    timestep_to_start_cfg=timestep_to_start_cfg,
                    neg_txt=neg_inp_cond['txt'],
                    neg_txt_ids=neg_inp_cond['txt_ids'],
                    neg_vec=neg_inp_cond['vec'],
                    true_gs=true_gs,
                    image_proj=image_proj,
                    neg_image_proj=neg_image_proj,
                    ip_scale=ip_scale,
                    neg_ip_scale=neg_ip_scale,
                )

            if self.offload:
                self.offload_model_to_cpu(self.model)
                self.ae.decoder.to(x.device)
            x = unpack(x.float(), height, width)
            x = self.ae.decode(x)
            self.offload_model_to_cpu(self.ae.decoder)

        x1 = x.clamp(-1, 1)
        x1 = rearrange(x1[-1], "c h w -> h w c")
        output_img = Image.fromarray((127.5 * (x1 + 1.0)).cpu().byte().numpy())
        return output_img

    def offload_model_to_cpu(self, *models):
        if not self.offload: return
        for model in models:
            model.cpu()
            torch.cuda.empty_cache()


class XFluxSampler(XFluxPipeline):
    def __init__(self, clip, t5, ae, model, device):
        self.clip = clip
        self.t5 = t5
        self.ae = ae
        self.model = model
        self.model.eval()
        self.device = device
        self.controlnet_loaded = False
        self.ip_loaded = False
        self.offload = False