File size: 14,703 Bytes
e5e58b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
import os
from dataclasses import dataclass

import torch
import json
import cv2
import numpy as np
from PIL import Image
from huggingface_hub import hf_hub_download
from safetensors import safe_open
from safetensors.torch import load_file as load_sft

from optimum.quanto import requantize

from .model import Flux, FluxParams
from .controlnet import ControlNetFlux
from .modules.autoencoder import AutoEncoder, AutoEncoderParams
from .modules.conditioner import HFEmbedder
from .annotator.dwpose import DWposeDetector
from .annotator.mlsd import MLSDdetector
from .annotator.canny import CannyDetector
from .annotator.midas import MidasDetector
from .annotator.hed import HEDdetector
from .annotator.tile import TileDetector
from .annotator.zoe import ZoeDetector


def load_safetensors(path):
    tensors = {}
    with safe_open(path, framework="pt", device="cpu") as f:
        for key in f.keys():
            tensors[key] = f.get_tensor(key)
    return tensors

def get_lora_rank(checkpoint):
    for k in checkpoint.keys():
        if k.endswith(".down.weight"):
            return checkpoint[k].shape[0]

def load_checkpoint(local_path, repo_id, name):
    if local_path is not None:
        if '.safetensors' in local_path:
            print(f"Loading .safetensors checkpoint from {local_path}")
            checkpoint = load_safetensors(local_path)
        else:
            print(f"Loading checkpoint from {local_path}")
            checkpoint = torch.load(local_path, map_location='cpu')
    elif repo_id is not None and name is not None:
        print(f"Loading checkpoint {name} from repo id {repo_id}")
        checkpoint = load_from_repo_id(repo_id, name)
    else:
        raise ValueError(
            "LOADING ERROR: you must specify local_path or repo_id with name in HF to download"
        )
    return checkpoint


def c_crop(image):
    width, height = image.size
    new_size = min(width, height)
    left = (width - new_size) / 2
    top = (height - new_size) / 2
    right = (width + new_size) / 2
    bottom = (height + new_size) / 2
    return image.crop((left, top, right, bottom))

def pad64(x):
    return int(np.ceil(float(x) / 64.0) * 64 - x)

def HWC3(x):
    assert x.dtype == np.uint8
    if x.ndim == 2:
        x = x[:, :, None]
    assert x.ndim == 3
    H, W, C = x.shape
    assert C == 1 or C == 3 or C == 4
    if C == 3:
        return x
    if C == 1:
        return np.concatenate([x, x, x], axis=2)
    if C == 4:
        color = x[:, :, 0:3].astype(np.float32)
        alpha = x[:, :, 3:4].astype(np.float32) / 255.0
        y = color * alpha + 255.0 * (1.0 - alpha)
        y = y.clip(0, 255).astype(np.uint8)
        return y

def safer_memory(x):
    # Fix many MAC/AMD problems
    return np.ascontiguousarray(x.copy()).copy()

#https://github.com/Mikubill/sd-webui-controlnet/blob/main/scripts/processor.py#L17
#Added upscale_method, mode params
def resize_image_with_pad(input_image, resolution, skip_hwc3=False, mode='edge'):
    if skip_hwc3:
        img = input_image
    else:
        img = HWC3(input_image)
    H_raw, W_raw, _ = img.shape
    if resolution == 0:
        return img, lambda x: x
    k = float(resolution) / float(min(H_raw, W_raw))
    H_target = int(np.round(float(H_raw) * k))
    W_target = int(np.round(float(W_raw) * k))
    img = cv2.resize(img, (W_target, H_target), interpolation=cv2.INTER_AREA)
    H_pad, W_pad = pad64(H_target), pad64(W_target)
    img_padded = np.pad(img, [[0, H_pad], [0, W_pad], [0, 0]], mode=mode)

    def remove_pad(x):
        return safer_memory(x[:H_target, :W_target, ...])

    return safer_memory(img_padded), remove_pad

class Annotator:
    def __init__(self, name: str, device: str):
        if name == "canny":
            processor = CannyDetector()
        elif name == "openpose":
            processor = DWposeDetector(device)
        elif name == "depth":
            processor = MidasDetector()
        elif name == "hed":
            processor = HEDdetector()
        elif name == "hough":
            processor = MLSDdetector()
        elif name == "tile":
            processor = TileDetector()
        elif name == "zoe":
            processor = ZoeDetector()
        self.name = name
        self.processor = processor

    def __call__(self, image: Image, width: int, height: int):
        image = np.array(image)
        detect_resolution = max(width, height)
        image, remove_pad = resize_image_with_pad(image, detect_resolution)

        image = np.array(image)
        if self.name == "canny":
            result = self.processor(image, low_threshold=100, high_threshold=200)
        elif self.name == "hough":
            result = self.processor(image, thr_v=0.05, thr_d=5)
        elif self.name == "depth":
            result = self.processor(image)
            result, _ = result
        else:
            result = self.processor(image)

        result = HWC3(remove_pad(result))
        result = cv2.resize(result, (width, height))
        return result


@dataclass
class ModelSpec:
    params: FluxParams
    ae_params: AutoEncoderParams
    ckpt_path: str | None
    ae_path: str | None
    repo_id: str | None
    repo_flow: str | None
    repo_ae: str | None
    repo_id_ae: str | None


configs = {
    "flux-dev": ModelSpec(
        repo_id="black-forest-labs/FLUX.1-dev",
        repo_id_ae="black-forest-labs/FLUX.1-dev",
        repo_flow="flux1-dev.safetensors",
        repo_ae="ae.safetensors",
        ckpt_path=os.getenv("FLUX_DEV"),
        params=FluxParams(
            in_channels=64,
            vec_in_dim=768,
            context_in_dim=4096,
            hidden_size=3072,
            mlp_ratio=4.0,
            num_heads=24,
            depth=19,
            depth_single_blocks=38,
            axes_dim=[16, 56, 56],
            theta=10_000,
            qkv_bias=True,
            guidance_embed=True,
        ),
        ae_path=os.getenv("AE"),
        ae_params=AutoEncoderParams(
            resolution=256,
            in_channels=3,
            ch=128,
            out_ch=3,
            ch_mult=[1, 2, 4, 4],
            num_res_blocks=2,
            z_channels=16,
            scale_factor=0.3611,
            shift_factor=0.1159,
        ),
    ),
    "flux-dev-fp8": ModelSpec(
        repo_id="XLabs-AI/flux-dev-fp8",
        repo_id_ae="black-forest-labs/FLUX.1-dev",
        repo_flow="flux-dev-fp8.safetensors",
        repo_ae="ae.safetensors",
        ckpt_path=os.getenv("FLUX_DEV_FP8"),
        params=FluxParams(
            in_channels=64,
            vec_in_dim=768,
            context_in_dim=4096,
            hidden_size=3072,
            mlp_ratio=4.0,
            num_heads=24,
            depth=19,
            depth_single_blocks=38,
            axes_dim=[16, 56, 56],
            theta=10_000,
            qkv_bias=True,
            guidance_embed=True,
        ),
        ae_path=os.getenv("AE"),
        ae_params=AutoEncoderParams(
            resolution=256,
            in_channels=3,
            ch=128,
            out_ch=3,
            ch_mult=[1, 2, 4, 4],
            num_res_blocks=2,
            z_channels=16,
            scale_factor=0.3611,
            shift_factor=0.1159,
        ),
    ),
    "flux-schnell": ModelSpec(
        repo_id="black-forest-labs/FLUX.1-schnell",
        repo_id_ae="black-forest-labs/FLUX.1-dev",
        repo_flow="flux1-schnell.safetensors",
        repo_ae="ae.safetensors",
        ckpt_path=os.getenv("FLUX_SCHNELL"),
        params=FluxParams(
            in_channels=64,
            vec_in_dim=768,
            context_in_dim=4096,
            hidden_size=3072,
            mlp_ratio=4.0,
            num_heads=24,
            depth=19,
            depth_single_blocks=38,
            axes_dim=[16, 56, 56],
            theta=10_000,
            qkv_bias=True,
            guidance_embed=False,
        ),
        ae_path=os.getenv("AE"),
        ae_params=AutoEncoderParams(
            resolution=256,
            in_channels=3,
            ch=128,
            out_ch=3,
            ch_mult=[1, 2, 4, 4],
            num_res_blocks=2,
            z_channels=16,
            scale_factor=0.3611,
            shift_factor=0.1159,
        ),
    ),
}


def print_load_warning(missing: list[str], unexpected: list[str]) -> None:
    if len(missing) > 0 and len(unexpected) > 0:
        print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
        print("\n" + "-" * 79 + "\n")
        print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
    elif len(missing) > 0:
        print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
    elif len(unexpected) > 0:
        print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))

def load_from_repo_id(repo_id, checkpoint_name):
    ckpt_path = hf_hub_download(repo_id, checkpoint_name)
    sd = load_sft(ckpt_path, device='cpu')
    return sd

def load_flow_model(name: str, device: str | torch.device = "cuda", hf_download: bool = True):
    # Loading Flux
    print("Init model")
    ckpt_path = configs[name].ckpt_path
    if (
        ckpt_path is None
        and configs[name].repo_id is not None
        and configs[name].repo_flow is not None
        and hf_download
    ):
        ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_flow)

    with torch.device("meta" if ckpt_path is not None else device):
        model = Flux(configs[name].params).to(torch.bfloat16)

    if ckpt_path is not None:
        print("Loading checkpoint")
        # load_sft doesn't support torch.device
        sd = load_sft(ckpt_path, device=str(device))
        missing, unexpected = model.load_state_dict(sd, strict=False, assign=True)
        print_load_warning(missing, unexpected)
    return model

def load_flow_model2(name: str, device: str | torch.device = "cuda", hf_download: bool = True):
    # Loading Flux
    print("Init model")
    ckpt_path = configs[name].ckpt_path
    if (
        ckpt_path is None
        and configs[name].repo_id is not None
        and configs[name].repo_flow is not None
        and hf_download
    ):
        ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_flow.replace("sft", "safetensors"))

    with torch.device("meta" if ckpt_path is not None else device):
        model = Flux(configs[name].params)

    if ckpt_path is not None:
        print("Loading checkpoint")
        # load_sft doesn't support torch.device
        sd = load_sft(ckpt_path, device=str(device))
        missing, unexpected = model.load_state_dict(sd, strict=False, assign=True)
        print_load_warning(missing, unexpected)
    return model

def load_flow_model_quintized(name: str, device: str | torch.device = "cuda", hf_download: bool = True):
    # Loading Flux
    print("Init model")
    ckpt_path = configs[name].ckpt_path
    if (
        ckpt_path is None
        and configs[name].repo_id is not None
        and configs[name].repo_flow is not None
        and hf_download
    ):
        ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_flow)
    json_path = hf_hub_download(configs[name].repo_id, 'flux_dev_quantization_map.json')


    model = Flux(configs[name].params).to(torch.bfloat16)

    print("Loading checkpoint")
    # load_sft doesn't support torch.device
    sd = load_sft(ckpt_path, device='cpu')
    with open(json_path, "r") as f:
        quantization_map = json.load(f)
    print("Start a quantization process...")
    requantize(model, sd, quantization_map, device=device)
    print("Model is quantized!")
    return model

def load_controlnet(name, device, transformer=None):
    with torch.device(device):
        controlnet = ControlNetFlux(configs[name].params)
    if transformer is not None:
        controlnet.load_state_dict(transformer.state_dict(), strict=False)
    return controlnet

def load_t5(device: str | torch.device = "cuda", max_length: int = 512) -> HFEmbedder:
    # max length 64, 128, 256 and 512 should work (if your sequence is short enough)
    return HFEmbedder("xlabs-ai/xflux_text_encoders", max_length=max_length, torch_dtype=torch.bfloat16).to(device)

def load_clip(device: str | torch.device = "cuda") -> HFEmbedder:
    return HFEmbedder("openai/clip-vit-large-patch14", max_length=77, torch_dtype=torch.bfloat16).to(device)


def load_ae(name: str, device: str | torch.device = "cuda", hf_download: bool = True) -> AutoEncoder:
    ckpt_path = configs[name].ae_path
    if (
        ckpt_path is None
        and configs[name].repo_id is not None
        and configs[name].repo_ae is not None
        and hf_download
    ):
        ckpt_path = hf_hub_download(configs[name].repo_id_ae, configs[name].repo_ae)

    # Loading the autoencoder
    print("Init AE")
    with torch.device("meta" if ckpt_path is not None else device):
        ae = AutoEncoder(configs[name].ae_params)

    if ckpt_path is not None:
        sd = load_sft(ckpt_path, device=str(device))
        missing, unexpected = ae.load_state_dict(sd, strict=False, assign=True)
        print_load_warning(missing, unexpected)
    return ae


class WatermarkEmbedder:
    def __init__(self, watermark):
        self.watermark = watermark
        self.num_bits = len(WATERMARK_BITS)
        self.encoder = WatermarkEncoder()
        self.encoder.set_watermark("bits", self.watermark)

    def __call__(self, image: torch.Tensor) -> torch.Tensor:
        """
        Adds a predefined watermark to the input image

        Args:
            image: ([N,] B, RGB, H, W) in range [-1, 1]

        Returns:
            same as input but watermarked
        """
        image = 0.5 * image + 0.5
        squeeze = len(image.shape) == 4
        if squeeze:
            image = image[None, ...]
        n = image.shape[0]
        image_np = rearrange((255 * image).detach().cpu(), "n b c h w -> (n b) h w c").numpy()[:, :, :, ::-1]
        # torch (b, c, h, w) in [0, 1] -> numpy (b, h, w, c) [0, 255]
        # watermarking libary expects input as cv2 BGR format
        for k in range(image_np.shape[0]):
            image_np[k] = self.encoder.encode(image_np[k], "dwtDct")
        image = torch.from_numpy(rearrange(image_np[:, :, :, ::-1], "(n b) h w c -> n b c h w", n=n)).to(
            image.device
        )
        image = torch.clamp(image / 255, min=0.0, max=1.0)
        if squeeze:
            image = image[0]
        image = 2 * image - 1
        return image


# A fixed 48-bit message that was choosen at random
WATERMARK_MESSAGE = 0b001010101111111010000111100111001111010100101110
# bin(x)[2:] gives bits of x as str, use int to convert them to 0/1
WATERMARK_BITS = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]]