Spaces:
Runtime error
Runtime error
File size: 13,225 Bytes
e5e58b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import argparse
import logging
import math
import os
import random
import shutil
from contextlib import nullcontext
from pathlib import Path
import accelerate
import datasets
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.state import AcceleratorState
from accelerate.utils import ProjectConfiguration, set_seed
from huggingface_hub import create_repo, upload_folder
from packaging import version
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
from transformers.utils import ContextManagers
from omegaconf import OmegaConf
from copy import deepcopy
import diffusers
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline
from diffusers.optimization import get_scheduler
from diffusers.training_utils import EMAModel, compute_dream_and_update_latents, compute_snr
from diffusers.utils import check_min_version, deprecate, is_wandb_available, make_image_grid
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.torch_utils import is_compiled_module
from einops import rearrange
from src.flux.sampling import denoise, get_noise, get_schedule, prepare, unpack
from src.flux.util import (configs, load_ae, load_clip,
load_flow_model2, load_t5)
from image_datasets.dataset import loader
if is_wandb_available():
import wandb
logger = get_logger(__name__, log_level="INFO")
def get_models(name: str, device, offload: bool, is_schnell: bool):
t5 = load_t5(device, max_length=256 if is_schnell else 512)
clip = load_clip(device)
clip.requires_grad_(False)
model = load_flow_model2(name, device="cpu")
vae = load_ae(name, device="cpu" if offload else device)
return model, vae, t5, clip
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--config",
type=str,
default=None,
required=True,
help="path to config",
)
args = parser.parse_args()
return args.config
def main():
args = OmegaConf.load(parse_args())
is_schnell = args.model_name == "flux-schnell"
logging_dir = os.path.join(args.output_dir, args.logging_dir)
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_config=accelerator_project_config,
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
dit, vae, t5, clip = get_models(name=args.model_name, device=accelerator.device, offload=False, is_schnell=is_schnell)
vae.requires_grad_(False)
t5.requires_grad_(False)
clip.requires_grad_(False)
dit = dit.to(torch.float32)
dit.train()
optimizer_cls = torch.optim.AdamW
#you can train your own layers
for n, param in dit.named_parameters():
if 'txt_attn' not in n:
param.requires_grad = False
print(sum([p.numel() for p in dit.parameters() if p.requires_grad]) / 1000000, 'parameters')
optimizer = optimizer_cls(
[p for p in dit.parameters() if p.requires_grad],
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
train_dataloader = loader(**args.data_config)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps * accelerator.num_processes,
)
global_step = 0
first_epoch = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint != "latest":
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = os.listdir(args.output_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1] if len(dirs) > 0 else None
if path is None:
accelerator.print(
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
)
args.resume_from_checkpoint = None
initial_global_step = 0
else:
accelerator.print(f"Resuming from checkpoint {path}")
dit_state = torch.load(os.path.join(args.output_dir, path, 'dit.bin'), map_location='cpu')
dit_state2 = {}
for k in dit_state.keys():
dit_state2[k[len('module.'):]] = dit_state[k]
dit.load_state_dict(dit_state2)
optimizer_state = torch.load(os.path.join(args.output_dir, path, 'optimizer.bin'), map_location='cpu')['base_optimizer_state']
optimizer.load_state_dict(optimizer_state)
global_step = int(path.split("-")[1])
initial_global_step = global_step
first_epoch = global_step // num_update_steps_per_epoch
else:
initial_global_step = 0
dit, optimizer, _, lr_scheduler = accelerator.prepare(
dit, optimizer, deepcopy(train_dataloader), lr_scheduler
)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
args.mixed_precision = accelerator.mixed_precision
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
args.mixed_precision = accelerator.mixed_precision
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
if accelerator.is_main_process:
accelerator.init_trackers(args.tracker_project_name, {"test": None})
timesteps = list(torch.linspace(1, 0, 1000).numpy())
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
progress_bar = tqdm(
range(0, args.max_train_steps),
initial=initial_global_step,
desc="Steps",
disable=not accelerator.is_local_main_process,
)
for epoch in range(first_epoch, args.num_train_epochs):
train_loss = 0.0
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(dit):
img, prompts = batch
with torch.no_grad():
x_1 = vae.encode(img.to(accelerator.device).to(torch.float32))
inp = prepare(t5=t5, clip=clip, img=x_1, prompt=prompts)
x_1 = rearrange(x_1, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
bs = img.shape[0]
t = torch.sigmoid(torch.randn((bs,), device=accelerator.device))
x_0 = torch.randn_like(x_1).to(accelerator.device)
x_t = (1 - t) * x_1 + t * x_0
bsz = x_1.shape[0]
guidance_vec = torch.full((x_t.shape[0],), 4, device=x_t.device, dtype=x_t.dtype)
# Predict the noise residual and compute loss
model_pred = dit(img=x_t.to(weight_dtype),
img_ids=inp['img_ids'].to(weight_dtype),
txt=inp['txt'].to(weight_dtype),
txt_ids=inp['txt_ids'].to(weight_dtype),
y=inp['vec'].to(weight_dtype),
timesteps=t.to(weight_dtype),
guidance=guidance_vec.to(weight_dtype),)
#loss = F.mse_loss(model_pred.float(), (x_1 - x_0).float(), reduction="mean")
loss = F.mse_loss(model_pred.float(), (x_0 - x_1).float(), reduction="mean")
# Gather the losses across all processes for logging (if we use distributed training).
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean()
train_loss += avg_loss.item() / args.gradient_accumulation_steps
# Backpropagate
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(dit.parameters(), args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
accelerator.log({"train_loss": train_loss}, step=global_step)
train_loss = 0.0
if global_step % args.checkpointing_steps == 0:
if accelerator.is_main_process:
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
if args.checkpoints_total_limit is not None:
checkpoints = os.listdir(args.output_dir)
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
if len(checkpoints) >= args.checkpoints_total_limit:
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
removing_checkpoints = checkpoints[0:num_to_remove]
logger.info(
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
)
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
for removing_checkpoint in removing_checkpoints:
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
shutil.rmtree(removing_checkpoint)
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
if not os.path.exists(save_path):
os.mkdir(save_path)
torch.save(dit.state_dict(), os.path.join(save_path, 'dit.bin'))
torch.save(optimizer.state_dict(), os.path.join(save_path, 'optimizer.bin'))
#accelerator.save_state(save_path)
logger.info(f"Saved state to {save_path}")
logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
if global_step >= args.max_train_steps:
break
accelerator.wait_for_everyone()
accelerator.end_training()
if __name__ == "__main__":
main() |