stazizov's picture
init
e5e58b2
raw
history blame
3.06 kB
import os
import pandas as pd
import numpy as np
from PIL import Image
import torch
from torch.utils.data import Dataset, DataLoader
import json
import random
def image_resize(img, max_size=512):
w, h = img.size
if w >= h:
new_w = max_size
new_h = int((max_size / w) * h)
else:
new_h = max_size
new_w = int((max_size / h) * w)
return img.resize((new_w, new_h))
def c_crop(image):
width, height = image.size
new_size = min(width, height)
left = (width - new_size) / 2
top = (height - new_size) / 2
right = (width + new_size) / 2
bottom = (height + new_size) / 2
return image.crop((left, top, right, bottom))
def crop_to_aspect_ratio(image, ratio="16:9"):
width, height = image.size
ratio_map = {
"16:9": (16, 9),
"4:3": (4, 3),
"1:1": (1, 1)
}
target_w, target_h = ratio_map[ratio]
target_ratio_value = target_w / target_h
current_ratio = width / height
if current_ratio > target_ratio_value:
new_width = int(height * target_ratio_value)
offset = (width - new_width) // 2
crop_box = (offset, 0, offset + new_width, height)
else:
new_height = int(width / target_ratio_value)
offset = (height - new_height) // 2
crop_box = (0, offset, width, offset + new_height)
cropped_img = image.crop(crop_box)
return cropped_img
class CustomImageDataset(Dataset):
def __init__(self, img_dir, img_size=512, caption_type='json', random_ratio=False):
self.images = [os.path.join(img_dir, i) for i in os.listdir(img_dir) if '.jpg' in i or '.png' in i]
self.images.sort()
self.img_size = img_size
self.caption_type = caption_type
self.random_ratio = random_ratio
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
try:
img = Image.open(self.images[idx]).convert('RGB')
if self.random_ratio:
ratio = random.choice(["16:9", "default", "1:1", "4:3"])
if ratio != "default":
img = crop_to_aspect_ratio(img, ratio)
img = image_resize(img, self.img_size)
w, h = img.size
new_w = (w // 32) * 32
new_h = (h // 32) * 32
img = img.resize((new_w, new_h))
img = torch.from_numpy((np.array(img) / 127.5) - 1)
img = img.permute(2, 0, 1)
json_path = self.images[idx].split('.')[0] + '.' + self.caption_type
if self.caption_type == "json":
prompt = json.load(open(json_path))['caption']
else:
prompt = open(json_path).read()
return img, prompt
except Exception as e:
print(e)
return self.__getitem__(random.randint(0, len(self.images) - 1))
def loader(train_batch_size, num_workers, **args):
dataset = CustomImageDataset(**args)
return DataLoader(dataset, batch_size=train_batch_size, num_workers=num_workers, shuffle=True)