Spaces:
Runtime error
Runtime error
# This is an improved version and model of HED edge detection with Apache License, Version 2.0. | |
# Please use this implementation in your products | |
# This implementation may produce slightly different results from Saining Xie's official implementations, | |
# but it generates smoother edges and is more suitable for ControlNet as well as other image-to-image translations. | |
# Different from official models and other implementations, this is an RGB-input model (rather than BGR) | |
# and in this way it works better for gradio's RGB protocol | |
import os | |
import cv2 | |
import torch | |
import numpy as np | |
from huggingface_hub import hf_hub_download | |
from einops import rearrange | |
from ...annotator.util import annotator_ckpts_path | |
class DoubleConvBlock(torch.nn.Module): | |
def __init__(self, input_channel, output_channel, layer_number): | |
super().__init__() | |
self.convs = torch.nn.Sequential() | |
self.convs.append(torch.nn.Conv2d(in_channels=input_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1)) | |
for i in range(1, layer_number): | |
self.convs.append(torch.nn.Conv2d(in_channels=output_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1)) | |
self.projection = torch.nn.Conv2d(in_channels=output_channel, out_channels=1, kernel_size=(1, 1), stride=(1, 1), padding=0) | |
def __call__(self, x, down_sampling=False): | |
h = x | |
if down_sampling: | |
h = torch.nn.functional.max_pool2d(h, kernel_size=(2, 2), stride=(2, 2)) | |
for conv in self.convs: | |
h = conv(h) | |
h = torch.nn.functional.relu(h) | |
return h, self.projection(h) | |
class ControlNetHED_Apache2(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.norm = torch.nn.Parameter(torch.zeros(size=(1, 3, 1, 1))) | |
self.block1 = DoubleConvBlock(input_channel=3, output_channel=64, layer_number=2) | |
self.block2 = DoubleConvBlock(input_channel=64, output_channel=128, layer_number=2) | |
self.block3 = DoubleConvBlock(input_channel=128, output_channel=256, layer_number=3) | |
self.block4 = DoubleConvBlock(input_channel=256, output_channel=512, layer_number=3) | |
self.block5 = DoubleConvBlock(input_channel=512, output_channel=512, layer_number=3) | |
def __call__(self, x): | |
h = x - self.norm | |
h, projection1 = self.block1(h) | |
h, projection2 = self.block2(h, down_sampling=True) | |
h, projection3 = self.block3(h, down_sampling=True) | |
h, projection4 = self.block4(h, down_sampling=True) | |
h, projection5 = self.block5(h, down_sampling=True) | |
return projection1, projection2, projection3, projection4, projection5 | |
class HEDdetector: | |
def __init__(self): | |
modelpath = os.path.join(annotator_ckpts_path, "ControlNetHED.pth") | |
if not os.path.exists(modelpath): | |
modelpath = hf_hub_download("lllyasviel/Annotators", "ControlNetHED.pth") | |
self.netNetwork = ControlNetHED_Apache2().float().cuda().eval() | |
self.netNetwork.load_state_dict(torch.load(modelpath)) | |
def __call__(self, input_image): | |
assert input_image.ndim == 3 | |
H, W, C = input_image.shape | |
with torch.no_grad(): | |
image_hed = torch.from_numpy(input_image.copy()).float().cuda() | |
image_hed = rearrange(image_hed, 'h w c -> 1 c h w') | |
edges = self.netNetwork(image_hed) | |
edges = [e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges] | |
edges = [cv2.resize(e, (W, H), interpolation=cv2.INTER_LINEAR) for e in edges] | |
edges = np.stack(edges, axis=2) | |
edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64))) | |
edge = (edge * 255.0).clip(0, 255).astype(np.uint8) | |
return edge | |
def nms(x, t, s): | |
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s) | |
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8) | |
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8) | |
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8) | |
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8) | |
y = np.zeros_like(x) | |
for f in [f1, f2, f3, f4]: | |
np.putmask(y, cv2.dilate(x, kernel=f) == x, x) | |
z = np.zeros_like(y, dtype=np.uint8) | |
z[y > t] = 255 | |
return z | |