import streamlit as st import requests from PIL import Image import numpy as np from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize from transformers import AutoFeatureExtractor, AutoModelForImageClassification from transformers import pipeline import openai from io import BytesIO import os import tempfile from diffusers import StableDiffusionPipeline import torch import base64 openai.api_key = os.getenv("OPENAI_API_KEY") # Load models and set up GPT-3 pipeline extractor = AutoFeatureExtractor.from_pretrained("stchakman/Fridge_Items_Model") model = AutoModelForImageClassification.from_pretrained("stchakman/Fridge_Items_Model") #gpt3 = pipeline("text-davinci-003", api_key="your_openai_api_key") # Map indices to ingredient names term_variables = { "Apples", "Asparagus", "Avocado", "Bananas", "BBQ sauce", "Beans", "Beef", "Beer", "Berries", "Bison", "Bread", "Broccoli", "Cauliflower", "Celery", "Cheese", "Chicken", "Chocolate", "Citrus fruits", "Clams", "Cold cuts", "Corn", "Cottage cheese", "Crab", "Cream", "Cream cheese", "Cucumbers", "Duck", "Eggs", "Energy drinks", "Fish", "Frozen vegetables", "Frozen meals", "Garlic", "Grapes", "Ground beef", "Ground chicken", "Ham", "Hot sauce", "Hummus", "Ice cream", "Jams", "Jerky", "Kiwi", "Lamb", "Lemons", "Lobster", "Mangoes", "Mayonnaise", "Melons", "Milk", "Mussels", "Mustard", "Nectarines", "Onions", "Oranges", "Peaches", "Peas", "Peppers", "Pineapple", "Pizza", "Plums", "Pork", "Potatoes", "Salad dressings", "Salmon", "Shrimp", "Sour cream", "Soy sauce", "Spinach", "Squash", "Steak", "Sweet potatoes", "Frozen Fruits", "Tilapia", "Tomatoes", "Tuna", "Turkey", "Venison", "Water bottles", "Wine", "Yogurt", "Zucchini" } ingredient_names = list(term_variables) classifier = pipeline("image-classification", model="stchakman/Fridge_Items_Model") def extract_ingredients(uploaded_image): temp_file = tempfile.NamedTemporaryFile(delete=False) temp_file.write(uploaded_image.getvalue()) temp_file.flush() image = Image.open(temp_file.name) preds = classifier(temp_file.name) ingredients = [pred["label"] for pred in preds] temp_file.close() os.unlink(temp_file.name) return ingredients def generate_dishes(ingredients, n=3, max_tokens=150, temperature=0.7): ingredients_str = ', '.join(ingredients) prompt = f"I have {ingredients_str} Please return the name of a dish I can make followed by the instructions on how to prepare that dish in bullet point form separate the name of the dish and instructions by ':'" response = openai.Completion.create( model="text-davinci-003", prompt=prompt, max_tokens=max_tokens, temperature=temperature, n=n ) dishes = [choice.text.strip() for choice in response.choices] return dishes model_id = "runwayml/stable-diffusion-v1-5" def generate_image(prompt): with st.spinner("Generating image..."): pipe = StableDiffusionPipeline.from_pretrained(model_id) # If you have a GPU available, uncomment the following line pipe = pipe.to("cuda") image = pipe(prompt).images[0] return image def get_image_download_link(image, filename, text): buffered = BytesIO() image.save(buffered, format="JPEG") img_str = base64.b64encode(buffered.getvalue()).decode() href = f'{text}' return href st.title("Fridge 2 Dish App") uploaded_file = st.file_uploader("Upload an image of your ingredients", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: ingredients = extract_ingredients(uploaded_file) st.write("Ingredients found:") st.write(", ".join(ingredients)) st.image(uploaded_file, caption="Uploaded Image", use_column_width=True) suggested_dishes = generate_dishes(ingredients) if len(suggested_dishes) > 0: st.write("Suggested dishes based on the ingredients:") for idx, dish in enumerate(suggested_dishes): st.write(f"{idx + 1}. {dish}") for idx, dish in enumerate(suggested_dishes[:3]): if st.button(f"Generate Image for Dish {idx + 1}"): dish_image = generate_image(dish.split(':')[0]) st.image(dish_image, caption=dish.split(':')[0], use_column_width=True) else: st.write("No dishes found for the given ingredients.")