import re from pathlib import Path import numpy as np import soundfile as sf import streamlit as st import document_to_podcast from document_to_podcast.preprocessing import DATA_LOADERS, DATA_CLEANERS from document_to_podcast.inference.model_loaders import ( load_llama_cpp_model, load_outetts_model, ) from document_to_podcast.config import DEFAULT_PROMPT, DEFAULT_SPEAKERS, Speaker from document_to_podcast.inference.text_to_speech import text_to_speech from document_to_podcast.inference.text_to_text import text_to_text_stream @st.cache_resource def load_text_to_text_model(): return load_llama_cpp_model( model_id="allenai/OLMoE-1B-7B-0924-Instruct-GGUF/olmoe-1b-7b-0924-instruct-q8_0.gguf" ) @st.cache_resource def load_text_to_speech_model(): return load_outetts_model("OuteAI/OuteTTS-0.2-500M-GGUF/OuteTTS-0.2-500M-FP16.gguf") script = "script" audio = "audio" gen_button = "generate podcast button" if script not in st.session_state: st.session_state[script] = "" if audio not in st.session_state: st.session_state.audio = [] if gen_button not in st.session_state: st.session_state[gen_button] = False def gen_button_clicked(): st.session_state[gen_button] = True st.title("Document To Podcast") st.header("Uploading Data") uploaded_file = st.file_uploader( "Choose a file", type=["pdf", "html", "txt", "docx", "md"] ) if uploaded_file is not None: st.divider() st.header("Loading and Cleaning Data") st.markdown( "[Docs for this Step](https://mozilla-ai.github.io/document-to-podcast/step-by-step-guide/#step-1-document-pre-processing)" ) st.divider() extension = Path(uploaded_file.name).suffix col1, col2 = st.columns(2) raw_text = DATA_LOADERS[extension](uploaded_file) with col1: st.subheader("Raw Text") st.text_area( f"Number of characters before cleaning: {len(raw_text)}", f"{raw_text[:500]} . . .", ) clean_text = DATA_CLEANERS[extension](raw_text) with col2: st.subheader("Cleaned Text") st.text_area( f"Number of characters after cleaning: {len(clean_text)}", f"{clean_text[:500]} . . .", ) st.divider() st.header("Downloading and Loading models") st.markdown( "[Docs for this Step](https://mozilla-ai.github.io/document-to-podcast/step-by-step-guide/#step-2-podcast-script-generation)" ) st.divider() st.markdown( "For this demo, we are using the following models: \n" "- [OLMoE-1B-7B-0924-Instruct](https://huggingface.co/allenai/OLMoE-1B-7B-0924-Instruct-GGUF)\n" "- [OuteAI/OuteTTS-0.2-500M-GGUF/OuteTTS-0.2-500M-FP16.gguf](https://huggingface.co/OuteAI/OuteTTS-0.2-500M-GGUF)" ) st.markdown( "You can check the [Customization Guide](https://mozilla-ai.github.io/document-to-podcast/customization/)" " for more information on how to use different models." ) text_model = load_text_to_text_model() speech_model = load_text_to_speech_model() # ~4 characters per token is considered a reasonable default. max_characters = text_model.n_ctx() * 4 if len(clean_text) > max_characters: st.warning( f"Input text is too big ({len(clean_text)})." f" Using only a subset of it ({max_characters})." ) clean_text = clean_text[:max_characters] st.divider() st.header("Podcast generation") st.markdown( "[Docs for this Step](https://mozilla-ai.github.io/document-to-podcast/step-by-step-guide/#step-3-audio-podcast-generation)" ) st.divider() st.subheader("Speaker configuration") for s in DEFAULT_SPEAKERS: s.pop("id", None) speakers = st.data_editor(DEFAULT_SPEAKERS, num_rows="dynamic") if st.button("Generate Podcast", on_click=gen_button_clicked): for n, speaker in enumerate(speakers): speaker["id"] = n + 1 speakers_str = "\n".join( str(Speaker.model_validate(speaker)) for speaker in speakers if all( speaker.get(x, None) for x in ["name", "description", "voice_profile"] ) ) system_prompt = DEFAULT_PROMPT.replace("{SPEAKERS}", speakers_str) with st.spinner("Generating Podcast..."): text = "" for chunk in text_to_text_stream( clean_text, text_model, system_prompt=system_prompt.strip() ): text += chunk if text.endswith("\n") and "Speaker" in text: st.session_state.script += text st.write(text) speaker_id = re.search(r"Speaker (\d+)", text).group(1) voice_profile = next( speaker["voice_profile"] for speaker in speakers if speaker["id"] == int(speaker_id) ) with st.spinner("Generating Audio..."): speech = text_to_speech( text.split(f'"Speaker {speaker_id}":')[-1], speech_model, voice_profile, ) st.audio(speech, sample_rate=speech_model.audio_codec.sr) st.session_state.audio.append(speech) text = "" if st.session_state[gen_button]: if st.button("Save Podcast to audio file"): st.session_state.audio = np.concatenate(st.session_state.audio) sf.write( "podcast.wav", st.session_state.audio, samplerate=speech_model.audio_codec.sr, ) st.markdown("Podcast saved to disk!") if st.button("Save Podcast script to text file"): with open("script.txt", "w") as f: st.session_state.script += "}" f.write(st.session_state.script) st.markdown("Script saved to disk!")