Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
title = """ | |
# hmLeaderboard | |
![hmLeaderboard](logo.png) | |
""" | |
description = """ | |
## Space for tracking and ranking models on Historic NER Datasets. | |
At the moment the following models are supported: | |
* hmBERT: [Historical Multilingual Language Models for Named Entity Recognition](https://huggingface.co/hmbert). | |
* hmTEAMS: [Historic Multilingual TEAMS Models](https://huggingface.co/hmteams). | |
""" | |
footer = "Made from Bavarian Oberland with ❤️ and 🥨." | |
model_selection_file_names = { | |
"Best Configuration": "best_model_configurations.csv", | |
"Best Model": "best_models.csv" | |
} | |
df_init = pd.read_csv(model_selection_file_names["Best Configuration"]) | |
dataset_names = df_init.columns.values[1:].tolist() | |
languages = list(set([dataset_name.split(" ")[0] for dataset_name in dataset_names])) | |
def perform_evaluation_for_datasets(model_selection, selected_datasets): | |
df = pd.read_csv(model_selection_file_names.get(model_selection)) | |
selected_indices = [] | |
for selected_dataset in selected_datasets: | |
selected_indices.append(dataset_names.index(selected_dataset) + 1) | |
mean_column = df.iloc[:, selected_indices].mean(axis=1).round(2) | |
# Include column with column name | |
result_df = df.iloc[:, [0] + selected_indices] | |
result_df["Average"] = mean_column | |
return result_df | |
def perform_evaluation_for_languages(model_selection, selected_languages): | |
df = pd.read_csv(model_selection_file_names.get(model_selection)) | |
selected_indices = [] | |
for selected_language in selected_languages: | |
selected_language = selected_language.lower() | |
found_indices = [i for i, column_name in enumerate(df.columns) if selected_language in column_name.lower()] | |
for found_index in found_indices: | |
selected_indices.append(found_index) | |
mean_column = df.iloc[:, selected_indices].mean(axis=1).round(2) | |
# Include column with column name | |
result_df = df.iloc[:, [0] + selected_indices] | |
result_df["Average"] = mean_column | |
return result_df | |
with gr.Blocks() as demo: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
with gr.Tab("Overview"): | |
gr.Markdown("### Best Configuration\nThe best hyper-parameter configuration for each model is used and average F1-score over runs with different seeds is reported here:") | |
df_result = perform_evaluation_for_datasets("Best Configuration", dataset_names) | |
gr.Dataframe(value=df_result) | |
gr.Markdown("### Best Model\nThe best hyper-parameter configuration for each model is used and the model with highest F1-score is used and its performance is reported here:") | |
df_result = perform_evaluation_for_datasets("Best Model", dataset_names) | |
gr.Dataframe(value=df_result) | |
with gr.Tab("Filtering"): | |
gr.Markdown("### Filtering\nSwiss-knife filtering for single datasets and languages is possible.") | |
model_selection = gr.Radio(choices=["Best Configuration", "Best Model"], | |
label="Model Selection", | |
info="Defines if best configuration or best model should be used for evaluation. When 'Best Configuration' is used, the best hyper-parameter configuration is used and then averaged F1-score over all runs is calculated. When 'Best Model' is chosen, the best hyper-parameter configuration and model with highest F1-score on development dataset is used (best model).", | |
value="Best Configuration") | |
with gr.Tab("Dataset Selection"): | |
datasets_selection = gr.CheckboxGroup( | |
dataset_names, label="Datasets", info="Select datasets for evaluation" | |
) | |
output_df = gr.Dataframe() | |
evaluation_button = gr.Button("Evaluate") | |
evaluation_button.click(fn=perform_evaluation_for_datasets, inputs=[model_selection, datasets_selection], outputs=output_df) | |
with gr.Tab("Language Selection"): | |
language_selection = gr.CheckboxGroup( | |
languages, label="Languages", info="Select languages for evaluation" | |
) | |
output_df = gr.Dataframe() | |
evaluation_button = gr.Button("Evaluate") | |
evaluation_button.click(fn=perform_evaluation_for_languages, inputs=[model_selection, language_selection], outputs=output_df) | |
gr.Markdown(footer) | |
demo.launch() | |