File size: 6,432 Bytes
34b12ff
 
 
 
 
576be81
34b12ff
 
 
 
 
576be81
34b12ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
576be81
34b12ff
576be81
34b12ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
576be81
34b12ff
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import networkx as nx
from streamlit.components.v1 import html
import streamlit as st
import helpers
st.set_page_config(layout='wide',
                   page_title='STriP: Semantic Similarity of Scientific Papers!',
                   page_icon='πŸ’‘'
                   )


def main():
    st.title('STriP (S3P): Semantic Similarity of Scientific Papers!')

    st.header('πŸ“‚ Load Data')
    uploaded_file = st.file_uploader("Choose a CSV file",
                                     help='Upload a CSV file with the following columns: Title, Abstract')

    ##########
    # Load data
    ##########
    if uploaded_file is not None:
        df = helpers.load_data(uploaded_file)
    else:
        df = helpers.load_data('data.csv')

    data = df.copy()
    st.write(f'Number of papers: {len(data)}')
    st.write('First 5 rows of loaded data:')
    st.write(data[['Title', 'Abstract']].head())

    if data is not None:
        ##########
        # Topic modeling
        ##########
        st.header('πŸ”₯ Topic Modeling')

        cols = st.columns(3)
        with cols[0]:
            min_topic_size = st.slider('Minimum topic size', key='min_topic_size', min_value=2,
                                       max_value=int(len(data)/3), step=1, value=3,
                                       help='The minimum size of the topic. Increasing this value will lead to a lower number of clusters/topics.')
        with cols[1]:
            n_gram_range = st.slider('N-gram range', key='n_gram_range', min_value=1,
                                     max_value=4, step=1, value=(1, 3),
                                     help='N-gram range for the topic model')
        with cols[2]:
            st.text('')
            st.text('')
            st.button('Reset Defaults', on_click=helpers.reset_default_topic_sliders, key='reset_topic_sliders',
                      kwargs={'min_topic_size': 3, 'n_gram_range': (1, 3)})

        with st.spinner('Topic Modeling'):
            data, topic_model, topics = helpers.topic_modeling(
                data, min_topic_size=min_topic_size, n_gram_range=n_gram_range)

            mapping = {
                'Topic Keywords': topic_model.visualize_barchart,
                'Topic Similarities': topic_model.visualize_heatmap,
                'Topic Hierarchies': topic_model.visualize_hierarchy,
                'Intertopic Distance': topic_model.visualize_topics
            }

            cols = st.columns(3)
            with cols[0]:
                topic_model_vis_option = st.selectbox(
                    'Select Topic Modeling Visualization', mapping.keys())
            try:
                fig = mapping[topic_model_vis_option]()
                fig.update_layout(title='')
                st.plotly_chart(fig, use_container_width=True)
            except:
                st.warning(
                    'No visualization available. Try a lower Minimum topic size!')

        ##########
        # STriP Network
        ##########
        st.header('πŸš€ STriP Network')

        with st.spinner('Embedding generation'):
            data = helpers.embeddings(data)

        with st.spinner('Cosine Similarity Calculation'):
            cosine_sim_matrix = helpers.cosine_sim(data)

        min_value, value = helpers.calc_optimal_threshold(
            cosine_sim_matrix,
            # 25% is a good value for the number of papers
            max_connections=helpers.calc_max_connections(len(data), 0.25)
        )

        cols = st.columns(3)
        with cols[0]:
            threshold = st.slider('Cosine Similarity Threshold', key='threshold', min_value=min_value,
                                  max_value=1.0, step=0.01, value=value,
                                  help='The minimum cosine similarity between papers to draw a connection. Increasing this value will lead to a lesser connections.')

            neighbors, num_connections = helpers.calc_neighbors(
                cosine_sim_matrix, threshold)
            st.write(f'Number of connections: {num_connections}')

        with cols[1]:
            st.text('')
            st.text('')
            st.button('Reset Defaults', on_click=helpers.reset_default_threshold_slider, key='reset_threshold',
                      kwargs={'threshold': value})

        with st.spinner('Network Generation'):
            nx_net, pyvis_net = helpers.network_plot(
                data, topics, neighbors)

            # Save and read graph as HTML file (on Streamlit Sharing)
            try:
                path = '/tmp'
                pyvis_net.save_graph(f'{path}/pyvis_graph.html')
                HtmlFile = open(f'{path}/pyvis_graph.html',
                                'r', encoding='utf-8')

            # Save and read graph as HTML file (locally)
            except:
                path = '/html_files'
                pyvis_net.save_graph(f'{path}/pyvis_graph.html')
                HtmlFile = open(f'{path}/pyvis_graph.html',
                                'r', encoding='utf-8')

            # Load HTML file in HTML component for display on Streamlit page
            html(HtmlFile.read(), height=800)

        ##########
        # Centrality
        ##########
        st.header('πŸ… Most Important Papers')

        centrality_mapping = {
            'Closeness Centrality': nx.closeness_centrality,
            'Degree Centrality': nx.degree_centrality,
            'Eigenvector Centrality': nx.eigenvector_centrality,
            'Betweenness Centrality': nx.betweenness_centrality,
        }

        cols = st.columns(3)
        with cols[0]:
            centrality_option = st.selectbox(
                'Select Centrality Measure', centrality_mapping.keys())

        # Calculate centrality
        centrality = centrality_mapping[centrality_option](nx_net)

        with st.spinner('Network Centrality Calculation'):
            fig = helpers.network_centrality(
                data, centrality, centrality_option)
            st.plotly_chart(fig, use_container_width=True)

    st.markdown(
        """
        πŸ’‘πŸ”₯πŸš€ STriP v1.0 πŸš€πŸ”₯πŸ’‘

        πŸ‘¨β€πŸ”¬ Author: Marie Stephen Leo

        πŸ‘” Linkedin: [Marie Stephen Leo](https://www.linkedin.com/in/marie-stephen-leo/)

        πŸ“ Medium: [@stephen-leo](https://stephen-leo.medium.com/)

        πŸ’» Github: [stephenleo](https://github.com/stephenleo)
        """
    )


if __name__ == '__main__':
    main()