Spaces:
Runtime error
Runtime error
File size: 5,524 Bytes
34b12ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import streamlit as st
from pyvis.network import Network
import plotly.express as px
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer
from bertopic import BERTopic
from sklearn.feature_extraction.text import CountVectorizer
import pandas as pd
import numpy as np
import networkx as nx
def reset_default_topic_sliders(min_topic_size, n_gram_range):
st.session_state['min_topic_size'] = min_topic_size
st.session_state['n_gram_range'] = n_gram_range
def reset_default_threshold_slider(threshold):
st.session_state['threshold'] = threshold
@st.cache(allow_output_mutation=True)
def load_sbert_model():
return SentenceTransformer('allenai-specter')
@st.cache()
def load_data(uploaded_file):
data = pd.read_csv(uploaded_file)
data = data[['Title', 'Abstract']]
data = data.dropna()
data = data.reset_index(drop=True)
return data
@st.cache(allow_output_mutation=True)
def topic_modeling(data, min_topic_size, n_gram_range):
"""Topic modeling using BERTopic
"""
topic_model = BERTopic(
embedding_model=load_sbert_model(),
vectorizer_model=CountVectorizer(
stop_words='english', ngram_range=n_gram_range),
min_topic_size=min_topic_size
)
# For 'allenai-specter'
data['Title + Abstract'] = data['Title'] + '[SEP]' + data['Abstract']
# Train the topic model
data["Topic"], data["Probs"] = topic_model.fit_transform(
data['Title + Abstract'])
# Merge topic results
topic_df = topic_model.get_topic_info()[['Topic', 'Name']]
data = data.merge(topic_df, on='Topic', how='left')
# Topics
topics = topic_df.set_index('Topic').to_dict(orient='index')
return data, topic_model, topics
@st.cache(allow_output_mutation=True)
def embeddings(data):
data['embedding'] = load_sbert_model().encode(
data['Title + Abstract']).tolist()
return data
@st.cache()
def cosine_sim(data):
cosine_sim_matrix = cosine_similarity(data['embedding'].values.tolist())
# Take only upper triangular matrix
cosine_sim_matrix = np.triu(cosine_sim_matrix, k=1)
return cosine_sim_matrix
@st.cache()
def calc_max_connections(num_papers, ratio):
n = ratio*num_papers
return n*(n-1)/2
@st.cache()
def calc_optimal_threshold(cosine_sim_matrix, max_connections):
"""Calculates the optimal threshold for the cosine similarity matrix.
Allows a max of max_connections
"""
thresh_sweep = np.arange(0.05, 1.05, 0.05)
for idx, threshold in enumerate(thresh_sweep):
neighbors = np.argwhere(cosine_sim_matrix >= threshold).tolist()
if len(neighbors) < max_connections:
break
return round(thresh_sweep[idx-1], 2).item(), round(thresh_sweep[idx], 2).item()
@st.cache()
def calc_neighbors(cosine_sim_matrix, threshold):
neighbors = np.argwhere(cosine_sim_matrix >= threshold).tolist()
return neighbors, len(neighbors)
def nx_hash_func(nx_net):
"""Hash function for NetworkX graphs.
"""
return (list(nx_net.nodes()), list(nx_net.edges()))
def pyvis_hash_func(pyvis_net):
"""Hash function for pyvis graphs.
"""
return (pyvis_net.nodes, pyvis_net.edges)
@st.cache(hash_funcs={nx.Graph: nx_hash_func, Network: pyvis_hash_func})
def network_plot(data, topics, neighbors):
"""Creates a network plot of connected papers. Colored by Topic Model topics.
"""
nx_net = nx.Graph()
pyvis_net = Network(height='750px', width='100%', bgcolor='#222222')
# Add Nodes
nodes = [
(
row.Index,
{
'group': row.Topic,
'label': row.Index,
'title': row.Title,
'size': 20, 'font': {'size': 20, 'color': 'white'}
}
)
for row in data.itertuples()
]
nx_net.add_nodes_from(nodes)
assert(nx_net.number_of_nodes() == len(data))
# Add Legend Nodes
step = 150
x = -2000
y = -500
legend_nodes = [
(
len(data)+idx,
{
'group': key, 'label': ', '.join(value['Name'].split('_')[1:]),
'size': 30, 'physics': False, 'x': x, 'y': f'{y + idx*step}px',
# , 'fixed': True,
'shape': 'box', 'widthConstraint': 1000, 'font': {'size': 40, 'color': 'black'}
}
)
for idx, (key, value) in enumerate(topics.items())
]
nx_net.add_nodes_from(legend_nodes)
# Add Edges
nx_net.add_edges_from(neighbors)
assert(nx_net.number_of_edges() == len(neighbors))
# Plot the Pyvis graph
pyvis_net.from_nx(nx_net)
return nx_net, pyvis_net
@st.cache()
def network_centrality(data, centrality, centrality_option):
"""Calculates the centrality of the network
"""
# Sort Top 10 Central nodes
central_nodes = sorted(
centrality.items(), key=lambda item: item[1], reverse=True)
central_nodes = pd.DataFrame(central_nodes, columns=[
'node', centrality_option]).set_index('node')
joined_data = data.join(central_nodes)
top_central_nodes = joined_data.sort_values(
centrality_option, ascending=False).head(10)
# Plot the Top 10 Central nodes
fig = px.bar(top_central_nodes, x=centrality_option, y='Title')
fig.update_layout(yaxis={'categoryorder': 'total ascending'},
font={'size': 15},
height=800, width=800)
return fig
|