TAKAHE / app.py
steve7909's picture
little working with random row
69ce671
raw
history blame
3.8 kB
# -*- coding: utf-8 -*-
"""translation practice.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1KrnodZGBZrUFdaJ9FIn8IhtWtCL7peoE
"""
import requests
import gradio as gr
from dotenv import load_dotenv
import os
#from openai import OpenAI
from langchain_openai import OpenAI
import spacy
#from langchain.chat_models import ChatOpenAI
from langchain_openai import ChatOpenAI
from langchain.schema import AIMessage, HumanMessage
import pandas as pd
# Load environment variables from .env file
load_dotenv()
# Access the env
HF_TOKEN = os.getenv('HUGGING_FACE_TOKEN')
# openai setup
# client = OpenAI(
# api_key=os.getenv('OPENAI_API_KEY')
# )
# hugging face setup
#model_name = "mmnga/ELYZA-japanese-Llama-2-7b-instruct-gguf"
API_URL = f"https://api-inference.huggingface.co/models/"
#API_URL = f"https://api-inference.huggingface.co/models/{model_name}"
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
# Global variable to control debug printing
DEBUG_MODE = True
def debug_print(*args, **kwargs):
if DEBUG_MODE:
print(*args, **kwargs)
def split_sentences_ginza(input_text):
nlp = spacy.load("ja_core_news_sm")
doc = nlp(input_text)
sentences = [sent.text for sent in doc.sents]
return sentences
file_path = 'anki_japanese_english_pairs.csv'
def load_csv(file_path):
# Load the CSV file into a DataFrame
df = pd.read_csv(file_path)
return df
def get_sentence_pair(df):
# Get a random row from the DataFrame
random_row = df.sample(1)
#debug_print("### random_row:", random_row)
#print(random_row.shape)
japanese_sentence = str(random_row.iloc[0, 0])
english_sentence = str(random_row.iloc[0, 1])
debug_print("### Japanese sentence:", japanese_sentence)
debug_print("### English sentence:", english_sentence)
return japanese_sentence, english_sentence
japanese_sentence, english_sentence = get_sentence_pair(load_csv(file_path))
llm = ChatOpenAI(temperature=0.7, model='gpt-3.5-turbo')
def predict(message, history):
# Define your initial setup prompt here
initial_setup = f'''
Japanese students are learning to translate Japanese text to English text. They will be given a Japanese sentence to translate, and will provide an English translation attempt.
Based on the feedback you provide, they will revise their translation. This process will continue until their translation is accurate.
Encourage the student by specifying the strengths of their writing.
DO NOT PROVIDE THE CORRECT ENGLISH TRANSLATION. Let the student work it out.
The student's translation need not match the provided English translation exactly, but it should be accurate to the Japanese text.
Provide your feedback as a list.
Execute the following tasks step by step:
1. Ask the student to translate the following sentence from Japanese to English: {japanese_sentence}. Here is the English translation for reference: {english_sentence}
2. Suggest only mechanical corrections (i.e., spelling, grammar, and punctuation) for the student. Ask for another translation attempt.
'''
# Start your history with a SystemMessage containing the setup prompt
history_langchain_format = [AIMessage(content=initial_setup)]
for human, ai in history:
history_langchain_format.append(HumanMessage(content=human)) # convert to str to avoid error; not compatible with multimodal
history_langchain_format.append(AIMessage(content=ai))
history_langchain_format.append(HumanMessage(content=message))
gpt_response = llm(history_langchain_format)
return gpt_response.content
app = gr.ChatInterface(fn=predict, title="Translation Chatbot")#, multimodal=True)
app.launch()