Spaces:
Running
on
T4
Running
on
T4
File size: 6,460 Bytes
186701e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import copy
import os
import time
import torch
from mmengine import Config, DictAction
from mmengine.dist import get_world_size, init_dist
from mmengine.logging import MMLogger, print_log
from mmengine.registry import init_default_scope
from mmengine.runner import Runner, load_checkpoint
from mmengine.utils import mkdir_or_exist
from mmengine.utils.dl_utils import set_multi_processing
from mmyolo.registry import MODELS
# TODO: Refactoring and improving
def parse_args():
parser = argparse.ArgumentParser(description='MMYOLO benchmark a model')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument(
'--repeat-num',
type=int,
default=1,
help='number of repeat times of measurement for averaging the results')
parser.add_argument(
'--max-iter', type=int, default=2000, help='num of max iter')
parser.add_argument(
'--log-interval', type=int, default=50, help='interval of logging')
parser.add_argument(
'--work-dir',
help='the directory to save the file containing '
'benchmark metrics')
parser.add_argument(
'--fuse-conv-bn',
action='store_true',
help='Whether to fuse conv and bn, this will slightly increase'
'the inference speed')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def measure_inference_speed(cfg, checkpoint, max_iter, log_interval,
is_fuse_conv_bn):
env_cfg = cfg.get('env_cfg')
if env_cfg.get('cudnn_benchmark'):
torch.backends.cudnn.benchmark = True
mp_cfg: dict = env_cfg.get('mp_cfg', {})
set_multi_processing(**mp_cfg, distributed=cfg.distributed)
# Because multiple processes will occupy additional CPU resources,
# FPS statistics will be more unstable when num_workers is not 0.
# It is reasonable to set num_workers to 0.
dataloader_cfg = cfg.test_dataloader
dataloader_cfg['num_workers'] = 0
dataloader_cfg['batch_size'] = 1
dataloader_cfg['persistent_workers'] = False
data_loader = Runner.build_dataloader(dataloader_cfg)
# build the model and load checkpoint
model = MODELS.build(cfg.model)
load_checkpoint(model, checkpoint, map_location='cpu')
model = model.cuda()
model.eval()
# the first several iterations may be very slow so skip them
num_warmup = 5
pure_inf_time = 0
fps = 0
# benchmark with 2000 image and take the average
for i, data in enumerate(data_loader):
torch.cuda.synchronize()
start_time = time.perf_counter()
with torch.no_grad():
model.test_step(data)
torch.cuda.synchronize()
elapsed = time.perf_counter() - start_time
if i >= num_warmup:
pure_inf_time += elapsed
if (i + 1) % log_interval == 0:
fps = (i + 1 - num_warmup) / pure_inf_time
print_log(
f'Done image [{i + 1:<3}/ {max_iter}], '
f'fps: {fps:.1f} img / s, '
f'times per image: {1000 / fps:.1f} ms / img', 'current')
if (i + 1) == max_iter:
fps = (i + 1 - num_warmup) / pure_inf_time
print_log(
f'Overall fps: {fps:.1f} img / s, '
f'times per image: {1000 / fps:.1f} ms / img', 'current')
break
return fps
def repeat_measure_inference_speed(cfg,
checkpoint,
max_iter,
log_interval,
is_fuse_conv_bn,
repeat_num=1):
assert repeat_num >= 1
fps_list = []
for _ in range(repeat_num):
cp_cfg = copy.deepcopy(cfg)
fps_list.append(
measure_inference_speed(cp_cfg, checkpoint, max_iter, log_interval,
is_fuse_conv_bn))
if repeat_num > 1:
fps_list_ = [round(fps, 1) for fps in fps_list]
times_pre_image_list_ = [round(1000 / fps, 1) for fps in fps_list]
mean_fps_ = sum(fps_list_) / len(fps_list_)
mean_times_pre_image_ = sum(times_pre_image_list_) / len(
times_pre_image_list_)
print_log(
f'Overall fps: {fps_list_}[{mean_fps_:.1f}] img / s, '
f'times per image: '
f'{times_pre_image_list_}[{mean_times_pre_image_:.1f}] ms / img',
'current')
return fps_list
return fps_list[0]
# TODO: refactoring
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
init_default_scope(cfg.get('default_scope', 'mmyolo'))
distributed = False
if args.launcher != 'none':
init_dist(args.launcher, **cfg.get('env_cfg', {}).get('dist_cfg', {}))
distributed = True
assert get_world_size(
) == 1, 'Inference benchmark does not allow distributed multi-GPU'
cfg.distributed = distributed
log_file = None
if args.work_dir:
log_file = os.path.join(args.work_dir, 'benchmark.log')
mkdir_or_exist(args.work_dir)
MMLogger.get_instance('mmyolo', log_file=log_file, log_level='INFO')
repeat_measure_inference_speed(cfg, args.checkpoint, args.max_iter,
args.log_interval, args.fuse_conv_bn,
args.repeat_num)
if __name__ == '__main__':
main()
|