File size: 20,777 Bytes
186701e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
<div align="center">
  <img width="100%" src="https://user-images.githubusercontent.com/27466624/222385101-516e551c-49f5-480d-a135-4b24ee6dc308.png"/>
  <div>&nbsp;</div>
  <div align="center">
    <b><font size="5">OpenMMLab website</font></b>
    <sup>
      <a href="https://openmmlab.com">
        <i><font size="4">HOT</font></i>
      </a>
    </sup>
    &nbsp;&nbsp;&nbsp;&nbsp;
    <b><font size="5">OpenMMLab platform</font></b>
    <sup>
      <a href="https://platform.openmmlab.com">
        <i><font size="4">TRY IT OUT</font></i>
      </a>
    </sup>
  </div>
  <div>&nbsp;</div>

[![PyPI](https://img.shields.io/pypi/v/mmyolo)](https://pypi.org/project/mmyolo)
[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmyolo.readthedocs.io/en/latest/)
[![deploy](https://github.com/open-mmlab/mmyolo/workflows/deploy/badge.svg)](https://github.com/open-mmlab/mmyolo/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmyolo/branch/main/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmyolo)
[![license](https://img.shields.io/github/license/open-mmlab/mmyolo.svg)](https://github.com/open-mmlab/mmyolo/blob/main/LICENSE)
[![open issues](https://isitmaintained.com/badge/open/open-mmlab/mmyolo.svg)](https://github.com/open-mmlab/mmyolo/issues)
[![issue resolution](https://isitmaintained.com/badge/resolution/open-mmlab/mmyolo.svg)](https://github.com/open-mmlab/mmyolo/issues)

[๐Ÿ“˜Documentation](https://mmyolo.readthedocs.io/en/latest/) |
[๐Ÿ› ๏ธInstallation](https://mmyolo.readthedocs.io/en/latest/get_started/installation.html) |
[๐Ÿ‘€Model Zoo](https://mmyolo.readthedocs.io/en/latest/model_zoo.html) |
[๐Ÿ†•Update News](https://mmyolo.readthedocs.io/en/latest/notes/changelog.html) |
[๐Ÿค”Reporting Issues](https://github.com/open-mmlab/mmyolo/issues/new/choose)

</div>

<div align="center">

English | [็ฎ€ไฝ“ไธญๆ–‡](README_zh-CN.md)

</div>

<div align="center">
  <a href="https://openmmlab.medium.com/" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/219255827-67c1a27f-f8c5-46a9-811d-5e57448c61d1.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://discord.com/channels/1037617289144569886/1046608014234370059" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218347213-c080267f-cbb6-443e-8532-8e1ed9a58ea9.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://twitter.com/OpenMMLab" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218346637-d30c8a0f-3eba-4699-8131-512fb06d46db.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://www.youtube.com/openmmlab" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218346691-ceb2116a-465a-40af-8424-9f30d2348ca9.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://space.bilibili.com/1293512903" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/219026751-d7d14cce-a7c9-4e82-9942-8375fca65b99.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://www.zhihu.com/people/openmmlab" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/219026120-ba71e48b-6e94-4bd4-b4e9-b7d175b5e362.png" width="3%" alt="" /></a>
</div>

## ๐Ÿ“„ Table of Contents

- [๐Ÿฅณ ๐Ÿš€ What's New](#--whats-new-)
  - [โœจ Highlight](#-highlight-)
- [๐Ÿ“– Introduction](#-introduction-)
- [๐Ÿ› ๏ธ Installation](#%EF%B8%8F-installation-)
- [๐Ÿ‘จโ€๐Ÿซ Tutorial](#-tutorial-)
- [๐Ÿ“Š Overview of Benchmark and Model Zoo](#-overview-of-benchmark-and-model-zoo-)
- [โ“ FAQ](#-faq-)
- [๐Ÿ™Œ Contributing](#-contributing-)
- [๐Ÿค Acknowledgement](#-acknowledgement-)
- [๐Ÿ–Š๏ธ Citation](#๏ธ-citation-)
- [๐ŸŽซ License](#-license-)
- [๐Ÿ—๏ธ Projects in OpenMMLab](#%EF%B8%8F-projects-in-openmmlab-)

## ๐Ÿฅณ ๐Ÿš€ What's New [๐Ÿ”](#-table-of-contents)

๐Ÿ’Ž **v0.6.0** was released on 15/8/2023:

- Support YOLOv5 instance segmentation
- Support YOLOX-Pose based on MMPose
- Add 15 minutes instance segmentation tutorial.
- YOLOv5 supports using mask annotation to optimize bbox
- Add Multi-scale training and testing docs

For release history and update details, please refer to [changelog](https://mmyolo.readthedocs.io/en/latest/notes/changelog.html).

### โœจ Highlight [๐Ÿ”](#-table-of-contents)

We are excited to announce our latest work on real-time object recognition tasks, **RTMDet**, a family of fully convolutional single-stage detectors. RTMDet not only achieves the best parameter-accuracy trade-off on object detection from tiny to extra-large model sizes but also obtains new state-of-the-art performance on instance segmentation and rotated object detection tasks. Details can be found in the [technical report](https://arxiv.org/abs/2212.07784). Pre-trained models are [here](configs/rtmdet).

[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/real-time-instance-segmentation-on-mscoco)](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco?p=rtmdet-an-empirical-study-of-designing-real)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/object-detection-in-aerial-images-on-dota-1)](https://paperswithcode.com/sota/object-detection-in-aerial-images-on-dota-1?p=rtmdet-an-empirical-study-of-designing-real)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/object-detection-in-aerial-images-on-hrsc2016)](https://paperswithcode.com/sota/object-detection-in-aerial-images-on-hrsc2016?p=rtmdet-an-empirical-study-of-designing-real)

| Task                     | Dataset | AP                                   | FPS(TRT FP16 BS1 3090) |
| ------------------------ | ------- | ------------------------------------ | ---------------------- |
| Object Detection         | COCO    | 52.8                                 | 322                    |
| Instance Segmentation    | COCO    | 44.6                                 | 188                    |
| Rotated Object Detection | DOTA    | 78.9(single-scale)/81.3(multi-scale) | 121                    |

<div align=center>
<img src="https://user-images.githubusercontent.com/12907710/208044554-1e8de6b5-48d8-44e4-a7b5-75076c7ebb71.png"/>
</div>

MMYOLO currently implements the object detection and rotated object detection algorithm, but it has a significant training acceleration compared to the MMDeteciton version. The training speed is 2.6 times faster than the previous version.

## ๐Ÿ“– Introduction [๐Ÿ”](#-table-of-contents)

MMYOLO is an open source toolbox for YOLO series algorithms based on PyTorch and [MMDetection](https://github.com/open-mmlab/mmdetection). It is a part of the [OpenMMLab](https://openmmlab.com/) project.

The master branch works with **PyTorch 1.6+**.
<img src="https://user-images.githubusercontent.com/45811724/190993591-bd3f1f11-1c30-4b93-b5f4-05c9ff64ff7f.gif"/>

<details open>
<summary>Major features</summary>

- ๐Ÿ•น๏ธ **Unified and convenient benchmark**

  MMYOLO unifies the implementation of modules in various YOLO algorithms and provides a unified benchmark. Users can compare and analyze in a fair and convenient way.

- ๐Ÿ“š **Rich and detailed documentation**

  MMYOLO provides rich documentation for getting started, model deployment, advanced usages, and algorithm analysis, making it easy for users at different levels to get started and make extensions quickly.

- ๐Ÿงฉ **Modular Design**

  MMYOLO decomposes the framework into different components where users can easily customize a model by combining different modules with various training and testing strategies.

<img src="https://user-images.githubusercontent.com/27466624/199999337-0544a4cb-3cbd-4f3e-be26-bcd9e74db7ff.jpg" alt="BaseModule-P5"/>
  The figure above is contributed by RangeKing@GitHub, thank you very much!

And the figure of P6 model is in [model_design.md](docs/en/recommended_topics/model_design.md).

</details>

## ๐Ÿ› ๏ธ Installation [๐Ÿ”](#-table-of-contents)

MMYOLO relies on PyTorch, MMCV, MMEngine, and MMDetection. Below are quick steps for installation. Please refer to the [Install Guide](docs/en/get_started/installation.md) for more detailed instructions.

```shell
conda create -n mmyolo python=3.8 pytorch==1.10.1 torchvision==0.11.2 cudatoolkit=11.3 -c pytorch -y
conda activate mmyolo
pip install openmim
mim install "mmengine>=0.6.0"
mim install "mmcv>=2.0.0rc4,<2.1.0"
mim install "mmdet>=3.0.0,<4.0.0"
git clone https://github.com/open-mmlab/mmyolo.git
cd mmyolo
# Install albumentations
pip install -r requirements/albu.txt
# Install MMYOLO
mim install -v -e .
```

## ๐Ÿ‘จโ€๐Ÿซ Tutorial [๐Ÿ”](#-table-of-contents)

MMYOLO is based on MMDetection and adopts the same code structure and design approach. To get better use of this, please read [MMDetection Overview](https://mmdetection.readthedocs.io/en/latest/get_started.html) for the first understanding of MMDetection.

The usage of MMYOLO is almost identical to MMDetection and all tutorials are straightforward to use, you can also learn about [MMDetection User Guide and Advanced Guide](https://mmdetection.readthedocs.io/en/3.x/).

For different parts from MMDetection, we have also prepared user guides and advanced guides, please read our [documentation](https://mmyolo.readthedocs.io/zenh_CN/latest/).

<details>
<summary>Get Started</summary>

- [Overview](docs/en/get_started/overview.md)
- [Dependencies](docs/en/get_started/dependencies.md)
- [Installation](docs/en/get_started/installation.md)
- [15 minutes object detection](docs/en/get_started/15_minutes_object_detection.md)
- [15 minutes rotated object detection](docs/en/get_started/15_minutes_rotated_object_detection.md)
- [15 minutes instance segmentation](docs/en/get_started/15_minutes_instance_segmentation.md)
- [Resources summary](docs/en/get_started/article.md)

</details>

<details>
<summary>Recommended Topics</summary>

- [How to contribute code to MMYOLO](docs/en/recommended_topics/contributing.md)
- [Training testing tricks](docs/en/recommended_topics/training_testing_tricks.md)
- [MMYOLO model design](docs/en/recommended_topics/model_design.md)
- [Algorithm principles and implementation](docs/en/recommended_topics/algorithm_descriptions/)
- [Replace the backbone network](docs/en/recommended_topics/replace_backbone.md)
- [MMYOLO model complexity analysis](docs/en/recommended_topics/complexity_analysis.md)
- [Annotation-to-deployment workflow for custom dataset](docs/en/recommended_topics/labeling_to_deployment_tutorials.md)
- [Visualization](docs/en/recommended_topics/visualization.md)
- [Model deployment](docs/en/recommended_topics/deploy/)
- [Troubleshooting steps](docs/en/recommended_topics/troubleshooting_steps.md)
- [MMYOLO application examples](docs/en/recommended_topics/application_examples/)
- [MM series repo essential basics](docs/en/recommended_topics/mm_basics.md)
- [Dataset preparation and description](docs/en/recommended_topics/dataset_preparation.md)

</details>

<details>
<summary>Common Usage</summary>

- [Resume training](docs/en/common_usage/resume_training.md)
- [Enabling and disabling SyncBatchNorm](docs/en/common_usage/syncbn.md)
- [Enabling AMP](docs/en/common_usage/amp_training.md)
- [Multi-scale training and testing](docs/en/common_usage/ms_training_testing.md)
- [TTA Related Notes](docs/en/common_usage/tta.md)
- [Add plugins to the backbone network](docs/en/common_usage/plugins.md)
- [Freeze layers](docs/en/common_usage/freeze_layers.md)
- [Output model predictions](docs/en/common_usage/output_predictions.md)
- [Set random seed](docs/en/common_usage/set_random_seed.md)
- [Module combination](docs/en/common_usage/module_combination.md)
- [Cross-library calls using mim](docs/en/common_usage/mim_usage.md)
- [Apply multiple Necks](docs/en/common_usage/multi_necks.md)
- [Specify specific device training or inference](docs/en/common_usage/specify_device.md)
- [Single and multi-channel application examples](docs/en/common_usage/single_multi_channel_applications.md)

</details>

<details>
<summary>Useful Tools</summary>

- [Browse coco json](docs/en/useful_tools/browse_coco_json.md)
- [Browse dataset](docs/en/useful_tools/browse_dataset.md)
- [Print config](docs/en/useful_tools/print_config.md)
- [Dataset analysis](docs/en/useful_tools/dataset_analysis.md)
- [Optimize anchors](docs/en/useful_tools/optimize_anchors.md)
- [Extract subcoco](docs/en/useful_tools/extract_subcoco.md)
- [Visualization scheduler](docs/en/useful_tools/vis_scheduler.md)
- [Dataset converters](docs/en/useful_tools/dataset_converters.md)
- [Download dataset](docs/en/useful_tools/download_dataset.md)
- [Log analysis](docs/en/useful_tools/log_analysis.md)
- [Model converters](docs/en/useful_tools/model_converters.md)

</details>

<details>
<summary>Basic Tutorials</summary>

- [Learn about configs with YOLOv5](docs/en/tutorials/config.md)
- [Data flow](docs/en/tutorials/data_flow.md)
- [Rotated detection](docs/en/tutorials/rotated_detection.md)
- [Custom Installation](docs/en/tutorials/custom_installation.md)
- [Common Warning Notes](docs/zh_cn/tutorials/warning_notes.md)
- [FAQ](docs/en/tutorials/faq.md)

</details>

<details>
<summary>Advanced Tutorials</summary>

- [MMYOLO cross-library application](docs/en/advanced_guides/cross-library_application.md)

</details>

<details>
<summary>Descriptions</summary>

- [Changelog](docs/en/notes/changelog.md)
- [Compatibility](docs/en/notes/compatibility.md)
- [Conventions](docs/en/notes/conventions.md)
- [Code Style](docs/en/notes/code_style.md)

</details>

## ๐Ÿ“Š Overview of Benchmark and Model Zoo [๐Ÿ”](#-table-of-contents)

<div align=center>
<img src="https://user-images.githubusercontent.com/17425982/222087414-168175cc-dae6-4c5c-a8e3-3109a152dd19.png"/>
</div>

Results and models are available in the [model zoo](docs/en/model_zoo.md).

<details open>
<summary><b>Supported Tasks</b></summary>

- [x] Object detection
- [x] Rotated object detection

</details>

<details open>
<summary><b>Supported Algorithms</b></summary>

- [x] [YOLOv5](configs/yolov5)
- [ ] [YOLOv5u](configs/yolov5/yolov5u) (Inference only)
- [x] [YOLOX](configs/yolox)
- [x] [RTMDet](configs/rtmdet)
- [x] [RTMDet-Rotated](configs/rtmdet)
- [x] [YOLOv6](configs/yolov6)
- [x] [YOLOv7](configs/yolov7)
- [x] [PPYOLOE](configs/ppyoloe)
- [x] [YOLOv8](configs/yolov8)

</details>

<details open>
<summary><b>Supported Datasets</b></summary>

- [x] COCO Dataset
- [x] VOC Dataset
- [x] CrowdHuman Dataset
- [x] DOTA 1.0 Dataset

</details>

<details open>
<div align="center">
  <b>Module Components</b>
</div>
<table align="center">
  <tbody>
    <tr align="center" valign="bottom">
      <td>
        <b>Backbones</b>
      </td>
      <td>
        <b>Necks</b>
      </td>
      <td>
        <b>Loss</b>
      </td>
      <td>
        <b>Common</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
      <ul>
        <li>YOLOv5CSPDarknet</li>
        <li>YOLOv8CSPDarknet</li>
        <li>YOLOXCSPDarknet</li>
        <li>EfficientRep</li>
        <li>CSPNeXt</li>
        <li>YOLOv7Backbone</li>
        <li>PPYOLOECSPResNet</li>
        <li>mmdet backbone</li>
        <li>mmcls backbone</li>
        <li>timm</li>
      </ul>
      </td>
      <td>
      <ul>
        <li>YOLOv5PAFPN</li>
        <li>YOLOv8PAFPN</li>
        <li>YOLOv6RepPAFPN</li>
        <li>YOLOXPAFPN</li>
        <li>CSPNeXtPAFPN</li>
        <li>YOLOv7PAFPN</li>
        <li>PPYOLOECSPPAFPN</li>
      </ul>
      </td>
      <td>
        <ul>
          <li>IoULoss</li>
          <li>mmdet loss</li>
        </ul>
      </td>
      <td>
        <ul>
        </ul>
      </td>
    </tr>
</td>
    </tr>
  </tbody>
</table>

</details>

## โ“ FAQ [๐Ÿ”](#-table-of-contents)

Please refer to the [FAQ](docs/en/tutorials/faq.md) for frequently asked questions.

## ๐Ÿ™Œ Contributing [๐Ÿ”](#-table-of-contents)

We appreciate all contributions to improving MMYOLO. Ongoing projects can be found in our [GitHub Projects](https://github.com/open-mmlab/mmyolo/projects). Welcome community users to participate in these projects. Please refer to [CONTRIBUTING.md](.github/CONTRIBUTING.md) for the contributing guideline.

## ๐Ÿค Acknowledgement [๐Ÿ”](#-table-of-contents)

MMYOLO is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedback.
We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to re-implement existing methods and develop their own new detectors.

<div align="center">
  <a href="https://github.com/open-mmlab/mmyolo/graphs/contributors"><img src="https://contrib.rocks/image?repo=open-mmlab/mmyolo"/></a>
</div>

## ๐Ÿ–Š๏ธ Citation [๐Ÿ”](#-table-of-contents)

If you find this project useful in your research, please consider citing:

```latex
@misc{mmyolo2022,
    title={{MMYOLO: OpenMMLab YOLO} series toolbox and benchmark},
    author={MMYOLO Contributors},
    howpublished = {\url{https://github.com/open-mmlab/mmyolo}},
    year={2022}
}
```

## ๐ŸŽซ License [๐Ÿ”](#-table-of-contents)

This project is released under the [GPL 3.0 license](LICENSE).

## ๐Ÿ—๏ธ Projects in OpenMMLab [๐Ÿ”](#-table-of-contents)

- [MMEngine](https://github.com/open-mmlab/mmengine): OpenMMLab foundational library for training deep learning models.
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision.
- [MMPreTrain](https://github.com/open-mmlab/mmpretrain): OpenMMLab pre-training toolbox and benchmark.
- [MMagic](https://github.com/open-mmlab/mmagic): Open**MM**Lab **A**dvanced, **G**enerative and **I**ntelligent **C**reation toolbox.
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark.
- [MMYOLO](https://github.com/open-mmlab/mmyolo): OpenMMLab YOLO series toolbox and benchmark.
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark.
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox.
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark.
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark.
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning toolbox and benchmark.
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark.
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab fewshot learning toolbox and benchmark.
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark.
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark.
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark.
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox.
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox.
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab model deployment framework.
- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages.
- [MMEval](https://github.com/open-mmlab/mmeval): OpenMMLab machine learning evaluation library.
- [Playground](https://github.com/open-mmlab/playground): A central hub for gathering and showcasing amazing projects built upon OpenMMLab.