Spaces:
Running
on
T4
Running
on
T4
File size: 20,777 Bytes
186701e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
<div align="center">
<img width="100%" src="https://user-images.githubusercontent.com/27466624/222385101-516e551c-49f5-480d-a135-4b24ee6dc308.png"/>
<div> </div>
<div align="center">
<b><font size="5">OpenMMLab website</font></b>
<sup>
<a href="https://openmmlab.com">
<i><font size="4">HOT</font></i>
</a>
</sup>
<b><font size="5">OpenMMLab platform</font></b>
<sup>
<a href="https://platform.openmmlab.com">
<i><font size="4">TRY IT OUT</font></i>
</a>
</sup>
</div>
<div> </div>
[![PyPI](https://img.shields.io/pypi/v/mmyolo)](https://pypi.org/project/mmyolo)
[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmyolo.readthedocs.io/en/latest/)
[![deploy](https://github.com/open-mmlab/mmyolo/workflows/deploy/badge.svg)](https://github.com/open-mmlab/mmyolo/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmyolo/branch/main/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmyolo)
[![license](https://img.shields.io/github/license/open-mmlab/mmyolo.svg)](https://github.com/open-mmlab/mmyolo/blob/main/LICENSE)
[![open issues](https://isitmaintained.com/badge/open/open-mmlab/mmyolo.svg)](https://github.com/open-mmlab/mmyolo/issues)
[![issue resolution](https://isitmaintained.com/badge/resolution/open-mmlab/mmyolo.svg)](https://github.com/open-mmlab/mmyolo/issues)
[๐Documentation](https://mmyolo.readthedocs.io/en/latest/) |
[๐ ๏ธInstallation](https://mmyolo.readthedocs.io/en/latest/get_started/installation.html) |
[๐Model Zoo](https://mmyolo.readthedocs.io/en/latest/model_zoo.html) |
[๐Update News](https://mmyolo.readthedocs.io/en/latest/notes/changelog.html) |
[๐คReporting Issues](https://github.com/open-mmlab/mmyolo/issues/new/choose)
</div>
<div align="center">
English | [็ฎไฝไธญๆ](README_zh-CN.md)
</div>
<div align="center">
<a href="https://openmmlab.medium.com/" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/219255827-67c1a27f-f8c5-46a9-811d-5e57448c61d1.png" width="3%" alt="" /></a>
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
<a href="https://discord.com/channels/1037617289144569886/1046608014234370059" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/218347213-c080267f-cbb6-443e-8532-8e1ed9a58ea9.png" width="3%" alt="" /></a>
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
<a href="https://twitter.com/OpenMMLab" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/218346637-d30c8a0f-3eba-4699-8131-512fb06d46db.png" width="3%" alt="" /></a>
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
<a href="https://www.youtube.com/openmmlab" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/218346691-ceb2116a-465a-40af-8424-9f30d2348ca9.png" width="3%" alt="" /></a>
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
<a href="https://space.bilibili.com/1293512903" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/219026751-d7d14cce-a7c9-4e82-9942-8375fca65b99.png" width="3%" alt="" /></a>
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
<a href="https://www.zhihu.com/people/openmmlab" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/219026120-ba71e48b-6e94-4bd4-b4e9-b7d175b5e362.png" width="3%" alt="" /></a>
</div>
## ๐ Table of Contents
- [๐ฅณ ๐ What's New](#--whats-new-)
- [โจ Highlight](#-highlight-)
- [๐ Introduction](#-introduction-)
- [๐ ๏ธ Installation](#%EF%B8%8F-installation-)
- [๐จโ๐ซ Tutorial](#-tutorial-)
- [๐ Overview of Benchmark and Model Zoo](#-overview-of-benchmark-and-model-zoo-)
- [โ FAQ](#-faq-)
- [๐ Contributing](#-contributing-)
- [๐ค Acknowledgement](#-acknowledgement-)
- [๐๏ธ Citation](#๏ธ-citation-)
- [๐ซ License](#-license-)
- [๐๏ธ Projects in OpenMMLab](#%EF%B8%8F-projects-in-openmmlab-)
## ๐ฅณ ๐ What's New [๐](#-table-of-contents)
๐ **v0.6.0** was released on 15/8/2023:
- Support YOLOv5 instance segmentation
- Support YOLOX-Pose based on MMPose
- Add 15 minutes instance segmentation tutorial.
- YOLOv5 supports using mask annotation to optimize bbox
- Add Multi-scale training and testing docs
For release history and update details, please refer to [changelog](https://mmyolo.readthedocs.io/en/latest/notes/changelog.html).
### โจ Highlight [๐](#-table-of-contents)
We are excited to announce our latest work on real-time object recognition tasks, **RTMDet**, a family of fully convolutional single-stage detectors. RTMDet not only achieves the best parameter-accuracy trade-off on object detection from tiny to extra-large model sizes but also obtains new state-of-the-art performance on instance segmentation and rotated object detection tasks. Details can be found in the [technical report](https://arxiv.org/abs/2212.07784). Pre-trained models are [here](configs/rtmdet).
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/real-time-instance-segmentation-on-mscoco)](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco?p=rtmdet-an-empirical-study-of-designing-real)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/object-detection-in-aerial-images-on-dota-1)](https://paperswithcode.com/sota/object-detection-in-aerial-images-on-dota-1?p=rtmdet-an-empirical-study-of-designing-real)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/object-detection-in-aerial-images-on-hrsc2016)](https://paperswithcode.com/sota/object-detection-in-aerial-images-on-hrsc2016?p=rtmdet-an-empirical-study-of-designing-real)
| Task | Dataset | AP | FPS(TRT FP16 BS1 3090) |
| ------------------------ | ------- | ------------------------------------ | ---------------------- |
| Object Detection | COCO | 52.8 | 322 |
| Instance Segmentation | COCO | 44.6 | 188 |
| Rotated Object Detection | DOTA | 78.9(single-scale)/81.3(multi-scale) | 121 |
<div align=center>
<img src="https://user-images.githubusercontent.com/12907710/208044554-1e8de6b5-48d8-44e4-a7b5-75076c7ebb71.png"/>
</div>
MMYOLO currently implements the object detection and rotated object detection algorithm, but it has a significant training acceleration compared to the MMDeteciton version. The training speed is 2.6 times faster than the previous version.
## ๐ Introduction [๐](#-table-of-contents)
MMYOLO is an open source toolbox for YOLO series algorithms based on PyTorch and [MMDetection](https://github.com/open-mmlab/mmdetection). It is a part of the [OpenMMLab](https://openmmlab.com/) project.
The master branch works with **PyTorch 1.6+**.
<img src="https://user-images.githubusercontent.com/45811724/190993591-bd3f1f11-1c30-4b93-b5f4-05c9ff64ff7f.gif"/>
<details open>
<summary>Major features</summary>
- ๐น๏ธ **Unified and convenient benchmark**
MMYOLO unifies the implementation of modules in various YOLO algorithms and provides a unified benchmark. Users can compare and analyze in a fair and convenient way.
- ๐ **Rich and detailed documentation**
MMYOLO provides rich documentation for getting started, model deployment, advanced usages, and algorithm analysis, making it easy for users at different levels to get started and make extensions quickly.
- ๐งฉ **Modular Design**
MMYOLO decomposes the framework into different components where users can easily customize a model by combining different modules with various training and testing strategies.
<img src="https://user-images.githubusercontent.com/27466624/199999337-0544a4cb-3cbd-4f3e-be26-bcd9e74db7ff.jpg" alt="BaseModule-P5"/>
The figure above is contributed by RangeKing@GitHub, thank you very much!
And the figure of P6 model is in [model_design.md](docs/en/recommended_topics/model_design.md).
</details>
## ๐ ๏ธ Installation [๐](#-table-of-contents)
MMYOLO relies on PyTorch, MMCV, MMEngine, and MMDetection. Below are quick steps for installation. Please refer to the [Install Guide](docs/en/get_started/installation.md) for more detailed instructions.
```shell
conda create -n mmyolo python=3.8 pytorch==1.10.1 torchvision==0.11.2 cudatoolkit=11.3 -c pytorch -y
conda activate mmyolo
pip install openmim
mim install "mmengine>=0.6.0"
mim install "mmcv>=2.0.0rc4,<2.1.0"
mim install "mmdet>=3.0.0,<4.0.0"
git clone https://github.com/open-mmlab/mmyolo.git
cd mmyolo
# Install albumentations
pip install -r requirements/albu.txt
# Install MMYOLO
mim install -v -e .
```
## ๐จโ๐ซ Tutorial [๐](#-table-of-contents)
MMYOLO is based on MMDetection and adopts the same code structure and design approach. To get better use of this, please read [MMDetection Overview](https://mmdetection.readthedocs.io/en/latest/get_started.html) for the first understanding of MMDetection.
The usage of MMYOLO is almost identical to MMDetection and all tutorials are straightforward to use, you can also learn about [MMDetection User Guide and Advanced Guide](https://mmdetection.readthedocs.io/en/3.x/).
For different parts from MMDetection, we have also prepared user guides and advanced guides, please read our [documentation](https://mmyolo.readthedocs.io/zenh_CN/latest/).
<details>
<summary>Get Started</summary>
- [Overview](docs/en/get_started/overview.md)
- [Dependencies](docs/en/get_started/dependencies.md)
- [Installation](docs/en/get_started/installation.md)
- [15 minutes object detection](docs/en/get_started/15_minutes_object_detection.md)
- [15 minutes rotated object detection](docs/en/get_started/15_minutes_rotated_object_detection.md)
- [15 minutes instance segmentation](docs/en/get_started/15_minutes_instance_segmentation.md)
- [Resources summary](docs/en/get_started/article.md)
</details>
<details>
<summary>Recommended Topics</summary>
- [How to contribute code to MMYOLO](docs/en/recommended_topics/contributing.md)
- [Training testing tricks](docs/en/recommended_topics/training_testing_tricks.md)
- [MMYOLO model design](docs/en/recommended_topics/model_design.md)
- [Algorithm principles and implementation](docs/en/recommended_topics/algorithm_descriptions/)
- [Replace the backbone network](docs/en/recommended_topics/replace_backbone.md)
- [MMYOLO model complexity analysis](docs/en/recommended_topics/complexity_analysis.md)
- [Annotation-to-deployment workflow for custom dataset](docs/en/recommended_topics/labeling_to_deployment_tutorials.md)
- [Visualization](docs/en/recommended_topics/visualization.md)
- [Model deployment](docs/en/recommended_topics/deploy/)
- [Troubleshooting steps](docs/en/recommended_topics/troubleshooting_steps.md)
- [MMYOLO application examples](docs/en/recommended_topics/application_examples/)
- [MM series repo essential basics](docs/en/recommended_topics/mm_basics.md)
- [Dataset preparation and description](docs/en/recommended_topics/dataset_preparation.md)
</details>
<details>
<summary>Common Usage</summary>
- [Resume training](docs/en/common_usage/resume_training.md)
- [Enabling and disabling SyncBatchNorm](docs/en/common_usage/syncbn.md)
- [Enabling AMP](docs/en/common_usage/amp_training.md)
- [Multi-scale training and testing](docs/en/common_usage/ms_training_testing.md)
- [TTA Related Notes](docs/en/common_usage/tta.md)
- [Add plugins to the backbone network](docs/en/common_usage/plugins.md)
- [Freeze layers](docs/en/common_usage/freeze_layers.md)
- [Output model predictions](docs/en/common_usage/output_predictions.md)
- [Set random seed](docs/en/common_usage/set_random_seed.md)
- [Module combination](docs/en/common_usage/module_combination.md)
- [Cross-library calls using mim](docs/en/common_usage/mim_usage.md)
- [Apply multiple Necks](docs/en/common_usage/multi_necks.md)
- [Specify specific device training or inference](docs/en/common_usage/specify_device.md)
- [Single and multi-channel application examples](docs/en/common_usage/single_multi_channel_applications.md)
</details>
<details>
<summary>Useful Tools</summary>
- [Browse coco json](docs/en/useful_tools/browse_coco_json.md)
- [Browse dataset](docs/en/useful_tools/browse_dataset.md)
- [Print config](docs/en/useful_tools/print_config.md)
- [Dataset analysis](docs/en/useful_tools/dataset_analysis.md)
- [Optimize anchors](docs/en/useful_tools/optimize_anchors.md)
- [Extract subcoco](docs/en/useful_tools/extract_subcoco.md)
- [Visualization scheduler](docs/en/useful_tools/vis_scheduler.md)
- [Dataset converters](docs/en/useful_tools/dataset_converters.md)
- [Download dataset](docs/en/useful_tools/download_dataset.md)
- [Log analysis](docs/en/useful_tools/log_analysis.md)
- [Model converters](docs/en/useful_tools/model_converters.md)
</details>
<details>
<summary>Basic Tutorials</summary>
- [Learn about configs with YOLOv5](docs/en/tutorials/config.md)
- [Data flow](docs/en/tutorials/data_flow.md)
- [Rotated detection](docs/en/tutorials/rotated_detection.md)
- [Custom Installation](docs/en/tutorials/custom_installation.md)
- [Common Warning Notes](docs/zh_cn/tutorials/warning_notes.md)
- [FAQ](docs/en/tutorials/faq.md)
</details>
<details>
<summary>Advanced Tutorials</summary>
- [MMYOLO cross-library application](docs/en/advanced_guides/cross-library_application.md)
</details>
<details>
<summary>Descriptions</summary>
- [Changelog](docs/en/notes/changelog.md)
- [Compatibility](docs/en/notes/compatibility.md)
- [Conventions](docs/en/notes/conventions.md)
- [Code Style](docs/en/notes/code_style.md)
</details>
## ๐ Overview of Benchmark and Model Zoo [๐](#-table-of-contents)
<div align=center>
<img src="https://user-images.githubusercontent.com/17425982/222087414-168175cc-dae6-4c5c-a8e3-3109a152dd19.png"/>
</div>
Results and models are available in the [model zoo](docs/en/model_zoo.md).
<details open>
<summary><b>Supported Tasks</b></summary>
- [x] Object detection
- [x] Rotated object detection
</details>
<details open>
<summary><b>Supported Algorithms</b></summary>
- [x] [YOLOv5](configs/yolov5)
- [ ] [YOLOv5u](configs/yolov5/yolov5u) (Inference only)
- [x] [YOLOX](configs/yolox)
- [x] [RTMDet](configs/rtmdet)
- [x] [RTMDet-Rotated](configs/rtmdet)
- [x] [YOLOv6](configs/yolov6)
- [x] [YOLOv7](configs/yolov7)
- [x] [PPYOLOE](configs/ppyoloe)
- [x] [YOLOv8](configs/yolov8)
</details>
<details open>
<summary><b>Supported Datasets</b></summary>
- [x] COCO Dataset
- [x] VOC Dataset
- [x] CrowdHuman Dataset
- [x] DOTA 1.0 Dataset
</details>
<details open>
<div align="center">
<b>Module Components</b>
</div>
<table align="center">
<tbody>
<tr align="center" valign="bottom">
<td>
<b>Backbones</b>
</td>
<td>
<b>Necks</b>
</td>
<td>
<b>Loss</b>
</td>
<td>
<b>Common</b>
</td>
</tr>
<tr valign="top">
<td>
<ul>
<li>YOLOv5CSPDarknet</li>
<li>YOLOv8CSPDarknet</li>
<li>YOLOXCSPDarknet</li>
<li>EfficientRep</li>
<li>CSPNeXt</li>
<li>YOLOv7Backbone</li>
<li>PPYOLOECSPResNet</li>
<li>mmdet backbone</li>
<li>mmcls backbone</li>
<li>timm</li>
</ul>
</td>
<td>
<ul>
<li>YOLOv5PAFPN</li>
<li>YOLOv8PAFPN</li>
<li>YOLOv6RepPAFPN</li>
<li>YOLOXPAFPN</li>
<li>CSPNeXtPAFPN</li>
<li>YOLOv7PAFPN</li>
<li>PPYOLOECSPPAFPN</li>
</ul>
</td>
<td>
<ul>
<li>IoULoss</li>
<li>mmdet loss</li>
</ul>
</td>
<td>
<ul>
</ul>
</td>
</tr>
</td>
</tr>
</tbody>
</table>
</details>
## โ FAQ [๐](#-table-of-contents)
Please refer to the [FAQ](docs/en/tutorials/faq.md) for frequently asked questions.
## ๐ Contributing [๐](#-table-of-contents)
We appreciate all contributions to improving MMYOLO. Ongoing projects can be found in our [GitHub Projects](https://github.com/open-mmlab/mmyolo/projects). Welcome community users to participate in these projects. Please refer to [CONTRIBUTING.md](.github/CONTRIBUTING.md) for the contributing guideline.
## ๐ค Acknowledgement [๐](#-table-of-contents)
MMYOLO is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedback.
We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to re-implement existing methods and develop their own new detectors.
<div align="center">
<a href="https://github.com/open-mmlab/mmyolo/graphs/contributors"><img src="https://contrib.rocks/image?repo=open-mmlab/mmyolo"/></a>
</div>
## ๐๏ธ Citation [๐](#-table-of-contents)
If you find this project useful in your research, please consider citing:
```latex
@misc{mmyolo2022,
title={{MMYOLO: OpenMMLab YOLO} series toolbox and benchmark},
author={MMYOLO Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmyolo}},
year={2022}
}
```
## ๐ซ License [๐](#-table-of-contents)
This project is released under the [GPL 3.0 license](LICENSE).
## ๐๏ธ Projects in OpenMMLab [๐](#-table-of-contents)
- [MMEngine](https://github.com/open-mmlab/mmengine): OpenMMLab foundational library for training deep learning models.
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision.
- [MMPreTrain](https://github.com/open-mmlab/mmpretrain): OpenMMLab pre-training toolbox and benchmark.
- [MMagic](https://github.com/open-mmlab/mmagic): Open**MM**Lab **A**dvanced, **G**enerative and **I**ntelligent **C**reation toolbox.
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark.
- [MMYOLO](https://github.com/open-mmlab/mmyolo): OpenMMLab YOLO series toolbox and benchmark.
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark.
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox.
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark.
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark.
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning toolbox and benchmark.
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark.
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab fewshot learning toolbox and benchmark.
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark.
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark.
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark.
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox.
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox.
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab model deployment framework.
- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages.
- [MMEval](https://github.com/open-mmlab/mmeval): OpenMMLab machine learning evaluation library.
- [Playground](https://github.com/open-mmlab/playground): A central hub for gathering and showcasing amazing projects built upon OpenMMLab.
|