Spaces:
Running
on
T4
Running
on
T4
File size: 4,918 Bytes
186701e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
# Copyright (c) OpenMMLab. All rights reserved.
import unittest
import numpy as np
import torch
from mmdet.structures import DetDataSample
from mmdet.structures.bbox import HorizontalBoxes
from mmengine.structures import InstanceData
from mmyolo.datasets import BatchShapePolicy, yolov5_collate
def _rand_bboxes(rng, num_boxes, w, h):
cx, cy, bw, bh = rng.rand(num_boxes, 4).T
tl_x = ((cx * w) - (w * bw / 2)).clip(0, w)
tl_y = ((cy * h) - (h * bh / 2)).clip(0, h)
br_x = ((cx * w) + (w * bw / 2)).clip(0, w)
br_y = ((cy * h) + (h * bh / 2)).clip(0, h)
bboxes = np.vstack([tl_x, tl_y, br_x, br_y]).T
return bboxes
class TestYOLOv5Collate(unittest.TestCase):
def test_yolov5_collate(self):
rng = np.random.RandomState(0)
inputs = torch.randn((3, 10, 10))
data_samples = DetDataSample()
gt_instances = InstanceData()
bboxes = _rand_bboxes(rng, 4, 6, 8)
gt_instances.bboxes = HorizontalBoxes(bboxes, dtype=torch.float32)
labels = rng.randint(1, 2, size=len(bboxes))
gt_instances.labels = torch.LongTensor(labels)
data_samples.gt_instances = gt_instances
out = yolov5_collate([dict(inputs=inputs, data_samples=data_samples)])
self.assertIsInstance(out, dict)
self.assertTrue(out['inputs'].shape == (1, 3, 10, 10))
self.assertTrue(out['data_samples'], dict)
self.assertTrue(out['data_samples']['bboxes_labels'].shape == (4, 6))
out = yolov5_collate([dict(inputs=inputs, data_samples=data_samples)] *
2)
self.assertIsInstance(out, dict)
self.assertTrue(out['inputs'].shape == (2, 3, 10, 10))
self.assertTrue(out['data_samples'], dict)
self.assertTrue(out['data_samples']['bboxes_labels'].shape == (8, 6))
def test_yolov5_collate_with_multi_scale(self):
rng = np.random.RandomState(0)
inputs = torch.randn((3, 10, 10))
data_samples = DetDataSample()
gt_instances = InstanceData()
bboxes = _rand_bboxes(rng, 4, 6, 8)
gt_instances.bboxes = HorizontalBoxes(bboxes, dtype=torch.float32)
labels = rng.randint(1, 2, size=len(bboxes))
gt_instances.labels = torch.LongTensor(labels)
data_samples.gt_instances = gt_instances
out = yolov5_collate([dict(inputs=inputs, data_samples=data_samples)],
use_ms_training=True)
self.assertIsInstance(out, dict)
self.assertTrue(out['inputs'][0].shape == (3, 10, 10))
self.assertTrue(out['data_samples'], dict)
self.assertTrue(out['data_samples']['bboxes_labels'].shape == (4, 6))
self.assertIsInstance(out['inputs'], list)
self.assertIsInstance(out['data_samples']['bboxes_labels'],
torch.Tensor)
out = yolov5_collate(
[dict(inputs=inputs, data_samples=data_samples)] * 2,
use_ms_training=True)
self.assertIsInstance(out, dict)
self.assertTrue(out['inputs'][0].shape == (3, 10, 10))
self.assertTrue(out['data_samples'], dict)
self.assertTrue(out['data_samples']['bboxes_labels'].shape == (8, 6))
self.assertIsInstance(out['inputs'], list)
self.assertIsInstance(out['data_samples']['bboxes_labels'],
torch.Tensor)
class TestBatchShapePolicy(unittest.TestCase):
def test_batch_shape_policy(self):
src_data_infos = [{
'height': 20,
'width': 100,
}, {
'height': 11,
'width': 100,
}, {
'height': 21,
'width': 100,
}, {
'height': 30,
'width': 100,
}, {
'height': 10,
'width': 100,
}]
expected_data_infos = [{
'height': 10,
'width': 100,
'batch_shape': np.array([96, 672])
}, {
'height': 11,
'width': 100,
'batch_shape': np.array([96, 672])
}, {
'height': 20,
'width': 100,
'batch_shape': np.array([160, 672])
}, {
'height': 21,
'width': 100,
'batch_shape': np.array([160, 672])
}, {
'height': 30,
'width': 100,
'batch_shape': np.array([224, 672])
}]
batch_shapes_policy = BatchShapePolicy(batch_size=2)
out_data_infos = batch_shapes_policy(src_data_infos)
for i in range(5):
self.assertEqual(
(expected_data_infos[i]['height'],
expected_data_infos[i]['width']),
(out_data_infos[i]['height'], out_data_infos[i]['width']))
self.assertTrue(
np.allclose(expected_data_infos[i]['batch_shape'],
out_data_infos[i]['batch_shape']))
|