File size: 5,443 Bytes
186701e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp

from mmdet.engine.hooks.utils import trigger_visualization_hook
from mmengine.config import Config, ConfigDict, DictAction
from mmengine.evaluator import DumpResults
from mmengine.runner import Runner

from mmyolo.registry import RUNNERS
from mmyolo.utils import is_metainfo_lower


# TODO: support fuse_conv_bn
def parse_args():
    parser = argparse.ArgumentParser(
        description='MMYOLO test (and eval) a model')
    parser.add_argument('config', help='test config file path')
    parser.add_argument('checkpoint', help='checkpoint file')
    parser.add_argument(
        '--work-dir',
        help='the directory to save the file containing evaluation metrics')
    parser.add_argument(
        '--out',
        type=str,
        help='output result file (must be a .pkl file) in pickle format')
    parser.add_argument(
        '--json-prefix',
        type=str,
        help='the prefix of the output json file without perform evaluation, '
        'which is useful when you want to format the result to a specific '
        'format and submit it to the test server')
    parser.add_argument(
        '--tta',
        action='store_true',
        help='Whether to use test time augmentation')
    parser.add_argument(
        '--show', action='store_true', help='show prediction results')
    parser.add_argument(
        '--deploy',
        action='store_true',
        help='Switch model to deployment mode')
    parser.add_argument(
        '--show-dir',
        help='directory where painted images will be saved. '
        'If specified, it will be automatically saved '
        'to the work_dir/timestamp/show_dir')
    parser.add_argument(
        '--wait-time', type=float, default=2, help='the interval of show (s)')
    parser.add_argument(
        '--cfg-options',
        nargs='+',
        action=DictAction,
        help='override some settings in the used config, the key-value pair '
        'in xxx=yyy format will be merged into config file. If the value to '
        'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
        'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
        'Note that the quotation marks are necessary and that no white space '
        'is allowed.')
    parser.add_argument(
        '--launcher',
        choices=['none', 'pytorch', 'slurm', 'mpi'],
        default='none',
        help='job launcher')
    parser.add_argument('--local_rank', type=int, default=0)
    args = parser.parse_args()
    if 'LOCAL_RANK' not in os.environ:
        os.environ['LOCAL_RANK'] = str(args.local_rank)
    return args


def main():
    args = parse_args()

    # load config
    cfg = Config.fromfile(args.config)
    # replace the ${key} with the value of cfg.key
    # cfg = replace_cfg_vals(cfg)
    cfg.launcher = args.launcher
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)

    # work_dir is determined in this priority: CLI > segment in file > filename
    if args.work_dir is not None:
        # update configs according to CLI args if args.work_dir is not None
        cfg.work_dir = args.work_dir
    elif cfg.get('work_dir', None) is None:
        # use config filename as default work_dir if cfg.work_dir is None
        cfg.work_dir = osp.join('./work_dirs',
                                osp.splitext(osp.basename(args.config))[0])

    cfg.load_from = args.checkpoint

    if args.show or args.show_dir:
        cfg = trigger_visualization_hook(cfg, args)

    if args.deploy:
        cfg.custom_hooks.append(dict(type='SwitchToDeployHook'))

    # add `format_only` and `outfile_prefix` into cfg
    if args.json_prefix is not None:
        cfg_json = {
            'test_evaluator.format_only': True,
            'test_evaluator.outfile_prefix': args.json_prefix
        }
        cfg.merge_from_dict(cfg_json)

    # Determine whether the custom metainfo fields are all lowercase
    is_metainfo_lower(cfg)

    if args.tta:
        assert 'tta_model' in cfg, 'Cannot find ``tta_model`` in config.' \
                                   " Can't use tta !"
        assert 'tta_pipeline' in cfg, 'Cannot find ``tta_pipeline`` ' \
                                      "in config. Can't use tta !"

        cfg.model = ConfigDict(**cfg.tta_model, module=cfg.model)
        test_data_cfg = cfg.test_dataloader.dataset
        while 'dataset' in test_data_cfg:
            test_data_cfg = test_data_cfg['dataset']

        # batch_shapes_cfg will force control the size of the output image,
        # it is not compatible with tta.
        if 'batch_shapes_cfg' in test_data_cfg:
            test_data_cfg.batch_shapes_cfg = None
        test_data_cfg.pipeline = cfg.tta_pipeline

    # build the runner from config
    if 'runner_type' not in cfg:
        # build the default runner
        runner = Runner.from_cfg(cfg)
    else:
        # build customized runner from the registry
        # if 'runner_type' is set in the cfg
        runner = RUNNERS.build(cfg)

    # add `DumpResults` dummy metric
    if args.out is not None:
        assert args.out.endswith(('.pkl', '.pickle')), \
            'The dump file must be a pkl file.'
        runner.test_evaluator.metrics.append(
            DumpResults(out_file_path=args.out))

    # start testing
    runner.test()


if __name__ == '__main__':
    main()