Spaces:
Running
on
T4
Running
on
T4
File size: 3,963 Bytes
186701e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import json
import random
from pathlib import Path
import numpy as np
from pycocotools.coco import COCO
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
'--json', type=str, required=True, help='COCO json label path')
parser.add_argument(
'--out-dir', type=str, required=True, help='output path')
parser.add_argument(
'--ratios',
nargs='+',
type=float,
help='ratio for sub dataset, if set 2 number then will generate '
'trainval + test (eg. "0.8 0.1 0.1" or "2 1 1"), if set 3 number '
'then will generate train + val + test (eg. "0.85 0.15" or "2 1")')
parser.add_argument(
'--shuffle',
action='store_true',
help='Whether to display in disorder')
parser.add_argument('--seed', default=-1, type=int, help='seed')
args = parser.parse_args()
return args
def split_coco_dataset(coco_json_path: str, save_dir: str, ratios: list,
shuffle: bool, seed: int):
if not Path(coco_json_path).exists():
raise FileNotFoundError(f'Can not not found {coco_json_path}')
if not Path(save_dir).exists():
Path(save_dir).mkdir(parents=True)
# ratio normalize
ratios = np.array(ratios) / np.array(ratios).sum()
if len(ratios) == 2:
ratio_train, ratio_test = ratios
ratio_val = 0
train_type = 'trainval'
elif len(ratios) == 3:
ratio_train, ratio_val, ratio_test = ratios
train_type = 'train'
else:
raise ValueError('ratios must set 2 or 3 group!')
# Read coco info
coco = COCO(coco_json_path)
coco_image_ids = coco.getImgIds()
# gen image number of each dataset
val_image_num = int(len(coco_image_ids) * ratio_val)
test_image_num = int(len(coco_image_ids) * ratio_test)
train_image_num = len(coco_image_ids) - val_image_num - test_image_num
print('Split info: ====== \n'
f'Train ratio = {ratio_train}, number = {train_image_num}\n'
f'Val ratio = {ratio_val}, number = {val_image_num}\n'
f'Test ratio = {ratio_test}, number = {test_image_num}')
seed = int(seed)
if seed != -1:
print(f'Set the global seed: {seed}')
np.random.seed(seed)
if shuffle:
print('shuffle dataset.')
random.shuffle(coco_image_ids)
# split each dataset
train_image_ids = coco_image_ids[:train_image_num]
if val_image_num != 0:
val_image_ids = coco_image_ids[train_image_num:train_image_num +
val_image_num]
else:
val_image_ids = None
test_image_ids = coco_image_ids[train_image_num + val_image_num:]
# Save new json
categories = coco.loadCats(coco.getCatIds())
for img_id_list in [train_image_ids, val_image_ids, test_image_ids]:
if img_id_list is None:
continue
# Gen new json
img_dict = {
'images': coco.loadImgs(ids=img_id_list),
'categories': categories,
'annotations': coco.loadAnns(coco.getAnnIds(imgIds=img_id_list))
}
# save json
if img_id_list == train_image_ids:
json_file_path = Path(save_dir, f'{train_type}.json')
elif img_id_list == val_image_ids:
json_file_path = Path(save_dir, 'val.json')
elif img_id_list == test_image_ids:
json_file_path = Path(save_dir, 'test.json')
else:
raise ValueError('img_id_list ERROR!')
print(f'Saving json to {json_file_path}')
with open(json_file_path, 'w') as f_json:
json.dump(img_dict, f_json, ensure_ascii=False, indent=2)
print('All done!')
def main():
args = parse_args()
split_coco_dataset(args.json, args.out_dir, args.ratios, args.shuffle,
args.seed)
if __name__ == '__main__':
main()
|