Spaces:
Running
on
T4
Running
on
T4
# Copyright (c) OpenMMLab. All rights reserved. | |
import os | |
from argparse import ArgumentParser | |
from pathlib import Path | |
import mmcv | |
from mmdet.apis import inference_detector, init_detector | |
from mmengine.config import Config, ConfigDict | |
from mmengine.logging import print_log | |
from mmengine.utils import ProgressBar, path | |
from mmyolo.registry import VISUALIZERS | |
from mmyolo.utils import switch_to_deploy | |
from mmyolo.utils.labelme_utils import LabelmeFormat | |
from mmyolo.utils.misc import get_file_list, show_data_classes | |
def parse_args(): | |
parser = ArgumentParser() | |
parser.add_argument( | |
'img', help='Image path, include image file, dir and URL.') | |
parser.add_argument('config', help='Config file') | |
parser.add_argument('checkpoint', help='Checkpoint file') | |
parser.add_argument( | |
'--out-dir', default='./output', help='Path to output file') | |
parser.add_argument( | |
'--device', default='cuda:0', help='Device used for inference') | |
parser.add_argument( | |
'--show', action='store_true', help='Show the detection results') | |
parser.add_argument( | |
'--deploy', | |
action='store_true', | |
help='Switch model to deployment mode') | |
parser.add_argument( | |
'--tta', | |
action='store_true', | |
help='Whether to use test time augmentation') | |
parser.add_argument( | |
'--score-thr', type=float, default=0.3, help='Bbox score threshold') | |
parser.add_argument( | |
'--class-name', | |
nargs='+', | |
type=str, | |
help='Only Save those classes if set') | |
parser.add_argument( | |
'--to-labelme', | |
action='store_true', | |
help='Output labelme style label file') | |
args = parser.parse_args() | |
return args | |
def main(): | |
args = parse_args() | |
if args.to_labelme and args.show: | |
raise RuntimeError('`--to-labelme` or `--show` only ' | |
'can choose one at the same time.') | |
config = args.config | |
if isinstance(config, (str, Path)): | |
config = Config.fromfile(config) | |
elif not isinstance(config, Config): | |
raise TypeError('config must be a filename or Config object, ' | |
f'but got {type(config)}') | |
if 'init_cfg' in config.model.backbone: | |
config.model.backbone.init_cfg = None | |
if args.tta: | |
assert 'tta_model' in config, 'Cannot find ``tta_model`` in config.' \ | |
" Can't use tta !" | |
assert 'tta_pipeline' in config, 'Cannot find ``tta_pipeline`` ' \ | |
"in config. Can't use tta !" | |
config.model = ConfigDict(**config.tta_model, module=config.model) | |
test_data_cfg = config.test_dataloader.dataset | |
while 'dataset' in test_data_cfg: | |
test_data_cfg = test_data_cfg['dataset'] | |
# batch_shapes_cfg will force control the size of the output image, | |
# it is not compatible with tta. | |
if 'batch_shapes_cfg' in test_data_cfg: | |
test_data_cfg.batch_shapes_cfg = None | |
test_data_cfg.pipeline = config.tta_pipeline | |
# TODO: TTA mode will error if cfg_options is not set. | |
# This is an mmdet issue and needs to be fixed later. | |
# build the model from a config file and a checkpoint file | |
model = init_detector( | |
config, args.checkpoint, device=args.device, cfg_options={}) | |
if args.deploy: | |
switch_to_deploy(model) | |
if not args.show: | |
path.mkdir_or_exist(args.out_dir) | |
# init visualizer | |
visualizer = VISUALIZERS.build(model.cfg.visualizer) | |
visualizer.dataset_meta = model.dataset_meta | |
# get file list | |
files, source_type = get_file_list(args.img) | |
# get model class name | |
dataset_classes = model.dataset_meta.get('classes') | |
# ready for labelme format if it is needed | |
to_label_format = LabelmeFormat(classes=dataset_classes) | |
# check class name | |
if args.class_name is not None: | |
for class_name in args.class_name: | |
if class_name in dataset_classes: | |
continue | |
show_data_classes(dataset_classes) | |
raise RuntimeError( | |
'Expected args.class_name to be one of the list, ' | |
f'but got "{class_name}"') | |
# start detector inference | |
progress_bar = ProgressBar(len(files)) | |
for file in files: | |
result = inference_detector(model, file) | |
img = mmcv.imread(file) | |
img = mmcv.imconvert(img, 'bgr', 'rgb') | |
if source_type['is_dir']: | |
filename = os.path.relpath(file, args.img).replace('/', '_') | |
else: | |
filename = os.path.basename(file) | |
out_file = None if args.show else os.path.join(args.out_dir, filename) | |
progress_bar.update() | |
# Get candidate predict info with score threshold | |
pred_instances = result.pred_instances[ | |
result.pred_instances.scores > args.score_thr] | |
if args.to_labelme: | |
# save result to labelme files | |
out_file = out_file.replace( | |
os.path.splitext(out_file)[-1], '.json') | |
to_label_format(pred_instances, result.metainfo, out_file, | |
args.class_name) | |
continue | |
visualizer.add_datasample( | |
filename, | |
img, | |
data_sample=result, | |
draw_gt=False, | |
show=args.show, | |
wait_time=0, | |
out_file=out_file, | |
pred_score_thr=args.score_thr) | |
if not args.show and not args.to_labelme: | |
print_log( | |
f'\nResults have been saved at {os.path.abspath(args.out_dir)}') | |
elif args.to_labelme: | |
print_log('\nLabelme format label files ' | |
f'had all been saved in {args.out_dir}') | |
if __name__ == '__main__': | |
main() | |