Spaces:
Running
on
T4
Running
on
T4
# Copyright (c) OpenMMLab. All rights reserved. | |
import argparse | |
import os.path | |
from statistics import median | |
import matplotlib.patches as mpatches | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from mmengine.config import Config | |
from mmengine.registry import init_default_scope | |
from mmengine.utils import ProgressBar | |
from prettytable import PrettyTable | |
from mmyolo.registry import DATASETS | |
from mmyolo.utils.misc import show_data_classes | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description='Distribution of categories and bbox instances') | |
parser.add_argument('config', help='config file path') | |
parser.add_argument( | |
'--val-dataset', | |
default=False, | |
action='store_true', | |
help='The default train_dataset.' | |
'To change it to val_dataset, enter "--val-dataset"') | |
parser.add_argument( | |
'--class-name', | |
default=None, | |
type=str, | |
help='Display specific class, e.g., "bicycle"') | |
parser.add_argument( | |
'--area-rule', | |
default=None, | |
type=int, | |
nargs='+', | |
help='Redefine area rules,but no more than three numbers.' | |
' e.g., 30 70 125') | |
parser.add_argument( | |
'--func', | |
default=None, | |
type=str, | |
choices=[ | |
'show_bbox_num', 'show_bbox_wh', 'show_bbox_wh_ratio', | |
'show_bbox_area' | |
], | |
help='Dataset analysis function selection.') | |
parser.add_argument( | |
'--out-dir', | |
default='./dataset_analysis', | |
type=str, | |
help='Output directory of dataset analysis visualization results,' | |
' Save in "./dataset_analysis/" by default') | |
args = parser.parse_args() | |
return args | |
def show_bbox_num(cfg, out_dir, fig_set, class_name, class_num): | |
"""Display the distribution map of categories and number of bbox | |
instances.""" | |
print('\n\nDrawing bbox_num figure:') | |
# Draw designs | |
fig = plt.figure( | |
figsize=(fig_set['figsize'][0], fig_set['figsize'][1]), dpi=300) | |
plt.bar(class_name, class_num, align='center') | |
# Draw titles, labels and so on | |
for x, y in enumerate(class_num): | |
plt.text(x, y, '%s' % y, ha='center', fontsize=fig_set['fontsize'] + 3) | |
plt.xticks(rotation=fig_set['xticks_angle']) | |
plt.xlabel('Category Name') | |
plt.ylabel('Num of instances') | |
plt.title(cfg.dataset_type) | |
# Save figure | |
if not os.path.exists(out_dir): | |
os.makedirs(out_dir) | |
out_name = fig_set['out_name'] | |
fig.savefig( | |
f'{out_dir}/{out_name}_bbox_num.jpg', | |
bbox_inches='tight', | |
pad_inches=0.1) # Save Image | |
plt.close() | |
print(f'End and save in {out_dir}/{out_name}_bbox_num.jpg') | |
def show_bbox_wh(out_dir, fig_set, class_bbox_w, class_bbox_h, class_name): | |
"""Display the width and height distribution of categories and bbox | |
instances.""" | |
print('\n\nDrawing bbox_wh figure:') | |
# Draw designs | |
fig, ax = plt.subplots( | |
figsize=(fig_set['figsize'][0], fig_set['figsize'][1]), dpi=300) | |
# Set the position of the map and label on the x-axis | |
positions_w = list(range(0, 12 * len(class_name), 12)) | |
positions_h = list(range(6, 12 * len(class_name), 12)) | |
positions_x_label = list(range(3, 12 * len(class_name) + 1, 12)) | |
ax.violinplot( | |
class_bbox_w, positions_w, showmeans=True, showmedians=True, widths=4) | |
ax.violinplot( | |
class_bbox_h, positions_h, showmeans=True, showmedians=True, widths=4) | |
# Draw titles, labels and so on | |
plt.xticks(rotation=fig_set['xticks_angle']) | |
plt.ylabel('The width or height of bbox') | |
plt.xlabel('Class name') | |
plt.title('Width or height distribution of classes and bbox instances') | |
# Draw the max, min and median of wide data in violin chart | |
for i in range(len(class_bbox_w)): | |
plt.text( | |
positions_w[i], | |
median(class_bbox_w[i]), | |
f'{"%.2f" % median(class_bbox_w[i])}', | |
ha='center', | |
fontsize=fig_set['fontsize']) | |
plt.text( | |
positions_w[i], | |
max(class_bbox_w[i]), | |
f'{"%.2f" % max(class_bbox_w[i])}', | |
ha='center', | |
fontsize=fig_set['fontsize']) | |
plt.text( | |
positions_w[i], | |
min(class_bbox_w[i]), | |
f'{"%.2f" % min(class_bbox_w[i])}', | |
ha='center', | |
fontsize=fig_set['fontsize']) | |
# Draw the max, min and median of height data in violin chart | |
for i in range(len(positions_h)): | |
plt.text( | |
positions_h[i], | |
median(class_bbox_h[i]), | |
f'{"%.2f" % median(class_bbox_h[i])}', | |
ha='center', | |
fontsize=fig_set['fontsize']) | |
plt.text( | |
positions_h[i], | |
max(class_bbox_h[i]), | |
f'{"%.2f" % max(class_bbox_h[i])}', | |
ha='center', | |
fontsize=fig_set['fontsize']) | |
plt.text( | |
positions_h[i], | |
min(class_bbox_h[i]), | |
f'{"%.2f" % min(class_bbox_h[i])}', | |
ha='center', | |
fontsize=fig_set['fontsize']) | |
# Draw Legend | |
plt.setp(ax, xticks=positions_x_label, xticklabels=class_name) | |
labels = ['bbox_w', 'bbox_h'] | |
colors = ['steelblue', 'darkorange'] | |
patches = [ | |
mpatches.Patch(color=colors[i], label=f'{labels[i]:s}') | |
for i in range(len(colors)) | |
] | |
ax = plt.gca() | |
box = ax.get_position() | |
ax.set_position([box.x0, box.y0, box.width, box.height * 0.8]) | |
ax.legend(loc='upper center', handles=patches, ncol=2) | |
# Save figure | |
if not os.path.exists(out_dir): | |
os.makedirs(out_dir) | |
out_name = fig_set['out_name'] | |
fig.savefig( | |
f'{out_dir}/{out_name}_bbox_wh.jpg', | |
bbox_inches='tight', | |
pad_inches=0.1) # Save Image | |
plt.close() | |
print(f'End and save in {out_dir}/{out_name}_bbox_wh.jpg') | |
def show_bbox_wh_ratio(out_dir, fig_set, class_name, class_bbox_ratio): | |
"""Display the distribution map of category and bbox instance width and | |
height ratio.""" | |
print('\n\nDrawing bbox_wh_ratio figure:') | |
# Draw designs | |
fig, ax = plt.subplots( | |
figsize=(fig_set['figsize'][0], fig_set['figsize'][1]), dpi=300) | |
# Set the position of the map and label on the x-axis | |
positions = list(range(0, 6 * len(class_name), 6)) | |
ax.violinplot( | |
class_bbox_ratio, | |
positions, | |
showmeans=True, | |
showmedians=True, | |
widths=5) | |
# Draw titles, labels and so on | |
plt.xticks(rotation=fig_set['xticks_angle']) | |
plt.ylabel('Ratio of width to height of bbox') | |
plt.xlabel('Class name') | |
plt.title('Width to height ratio distribution of class and bbox instances') | |
# Draw the max, min and median of wide data in violin chart | |
for i in range(len(class_bbox_ratio)): | |
plt.text( | |
positions[i], | |
median(class_bbox_ratio[i]), | |
f'{"%.2f" % median(class_bbox_ratio[i])}', | |
ha='center', | |
fontsize=fig_set['fontsize']) | |
plt.text( | |
positions[i], | |
max(class_bbox_ratio[i]), | |
f'{"%.2f" % max(class_bbox_ratio[i])}', | |
ha='center', | |
fontsize=fig_set['fontsize']) | |
plt.text( | |
positions[i], | |
min(class_bbox_ratio[i]), | |
f'{"%.2f" % min(class_bbox_ratio[i])}', | |
ha='center', | |
fontsize=fig_set['fontsize']) | |
# Set the position of the map and label on the x-axis | |
plt.setp(ax, xticks=positions, xticklabels=class_name) | |
# Save figure | |
if not os.path.exists(out_dir): | |
os.makedirs(out_dir) | |
out_name = fig_set['out_name'] | |
fig.savefig( | |
f'{out_dir}/{out_name}_bbox_ratio.jpg', | |
bbox_inches='tight', | |
pad_inches=0.1) # Save Image | |
plt.close() | |
print(f'End and save in {out_dir}/{out_name}_bbox_ratio.jpg') | |
def show_bbox_area(out_dir, fig_set, area_rule, class_name, bbox_area_num): | |
"""Display the distribution map of category and bbox instance area based on | |
the rules of large, medium and small objects.""" | |
print('\n\nDrawing bbox_area figure:') | |
# Set the direct distance of each label and the width of each histogram | |
# Set the required labels and colors | |
positions = np.arange(0, 2 * len(class_name), 2) | |
width = 0.4 | |
labels = ['Small', 'Mediun', 'Large', 'Huge'] | |
colors = ['#438675', '#F7B469', '#6BA6DA', '#913221'] | |
# Draw designs | |
fig = plt.figure( | |
figsize=(fig_set['figsize'][0], fig_set['figsize'][1]), dpi=300) | |
for i in range(len(area_rule) - 1): | |
area_num = [bbox_area_num[idx][i] for idx in range(len(class_name))] | |
plt.bar( | |
positions + width * i, | |
area_num, | |
width, | |
label=labels[i], | |
color=colors[i]) | |
for idx, (x, y) in enumerate(zip(positions.tolist(), area_num)): | |
plt.text( | |
x + width * i, | |
y, | |
y, | |
ha='center', | |
fontsize=fig_set['fontsize'] - 1) | |
# Draw titles, labels and so on | |
plt.xticks(rotation=fig_set['xticks_angle']) | |
plt.xticks(positions + width * ((len(area_rule) - 2) / 2), class_name) | |
plt.ylabel('Class Area') | |
plt.xlabel('Class Name') | |
plt.title( | |
'Area and number of large, medium and small objects of each class') | |
# Set and Draw Legend | |
patches = [ | |
mpatches.Patch(color=colors[i], label=f'{labels[i]:s}') | |
for i in range(len(area_rule) - 1) | |
] | |
ax = plt.gca() | |
box = ax.get_position() | |
ax.set_position([box.x0, box.y0, box.width, box.height * 0.8]) | |
ax.legend(loc='upper center', handles=patches, ncol=len(area_rule) - 1) | |
# Save figure | |
if not os.path.exists(out_dir): | |
os.makedirs(out_dir) | |
out_name = fig_set['out_name'] | |
fig.savefig( | |
f'{out_dir}/{out_name}_bbox_area.jpg', | |
bbox_inches='tight', | |
pad_inches=0.1) # Save Image | |
plt.close() | |
print(f'End and save in {out_dir}/{out_name}_bbox_area.jpg') | |
def show_class_list(classes, class_num): | |
"""Print the data of the class obtained by the current run.""" | |
print('\n\nThe information obtained is as follows:') | |
class_info = PrettyTable() | |
class_info.title = 'Information of dataset class' | |
# List Print Settings | |
# If the quantity is too large, 25 rows will be displayed in each column | |
if len(classes) < 25: | |
class_info.add_column('Class name', classes) | |
class_info.add_column('Bbox num', class_num) | |
elif len(classes) % 25 != 0 and len(classes) > 25: | |
col_num = int(len(classes) / 25) + 1 | |
class_nums = class_num.tolist() | |
class_name_list = list(classes) | |
for i in range(0, (col_num * 25) - len(classes)): | |
class_name_list.append('') | |
class_nums.append('') | |
for i in range(0, len(class_name_list), 25): | |
class_info.add_column('Class name', class_name_list[i:i + 25]) | |
class_info.add_column('Bbox num', class_nums[i:i + 25]) | |
# Align display data to the left | |
class_info.align['Class name'] = 'l' | |
class_info.align['Bbox num'] = 'l' | |
print(class_info) | |
def show_data_list(args, area_rule): | |
"""Print run setup information.""" | |
print('\n\nPrint current running information:') | |
data_info = PrettyTable() | |
data_info.title = 'Dataset information' | |
# Print the corresponding information according to the settings | |
if args.val_dataset is False: | |
data_info.add_column('Dataset type', ['train_dataset']) | |
elif args.val_dataset is True: | |
data_info.add_column('Dataset type', ['val_dataset']) | |
if args.class_name is None: | |
data_info.add_column('Class name', ['All classes']) | |
else: | |
data_info.add_column('Class name', [args.class_name]) | |
if args.func is None: | |
data_info.add_column('Function', ['All function']) | |
else: | |
data_info.add_column('Function', [args.func]) | |
data_info.add_column('Area rule', [area_rule]) | |
print(data_info) | |
def main(): | |
args = parse_args() | |
cfg = Config.fromfile(args.config) | |
init_default_scope(cfg.get('default_scope', 'mmyolo')) | |
def replace_pipeline_to_none(cfg): | |
"""Recursively iterate over all dataset(or datasets) and set their | |
pipelines to none.Datasets are mean ConcatDataset. | |
Recursively terminates only when all dataset(or datasets) have been | |
traversed | |
""" | |
if cfg.get('dataset', None) is None and cfg.get('datasets', | |
None) is None: | |
return | |
dataset = cfg.dataset if cfg.get('dataset', None) else cfg.datasets | |
if isinstance(dataset, list): | |
for item in dataset: | |
item.pipeline = None | |
elif dataset.get('pipeline', None): | |
dataset.pipeline = None | |
else: | |
replace_pipeline_to_none(dataset) | |
# 1.Build Dataset | |
if args.val_dataset is False: | |
replace_pipeline_to_none(cfg.train_dataloader) | |
dataset = DATASETS.build(cfg.train_dataloader.dataset) | |
else: | |
replace_pipeline_to_none(cfg.val_dataloader) | |
dataset = DATASETS.build(cfg.val_dataloader.dataset) | |
# 2.Prepare data | |
# Drawing settings | |
fig_all_set = { | |
'figsize': [35, 18], | |
'fontsize': int(10 - 0.08 * len(dataset.metainfo['classes'])), | |
'xticks_angle': 70, | |
'out_name': cfg.dataset_type | |
} | |
fig_one_set = { | |
'figsize': [15, 10], | |
'fontsize': 10, | |
'xticks_angle': 0, | |
'out_name': args.class_name | |
} | |
# Call the category name and save address | |
if args.class_name is None: | |
classes = dataset.metainfo['classes'] | |
classes_idx = [i for i in range(len(classes))] | |
fig_set = fig_all_set | |
elif args.class_name in dataset.metainfo['classes']: | |
classes = [args.class_name] | |
classes_idx = [dataset.metainfo['classes'].index(args.class_name)] | |
fig_set = fig_one_set | |
else: | |
data_classes = dataset.metainfo['classes'] | |
show_data_classes(data_classes) | |
raise RuntimeError(f'Expected args.class_name to be one of the list,' | |
f'but got "{args.class_name}"') | |
# Building Area Rules | |
if args.area_rule is None: | |
area_rule = [0, 32, 96, 1e5] | |
elif args.area_rule and len(args.area_rule) <= 3: | |
area_rules = [0] + args.area_rule + [1e5] | |
area_rule = sorted(area_rules) | |
else: | |
raise RuntimeError( | |
f'Expected the "{args.area_rule}" to be e.g. 30 60 120, ' | |
'and no more than three numbers.') | |
# Build arrays or lists to store data for each category | |
class_num = np.zeros((len(classes), ), dtype=np.int64) | |
class_bbox = [[] for _ in classes] | |
class_name = [] | |
class_bbox_w = [] | |
class_bbox_h = [] | |
class_bbox_ratio = [] | |
bbox_area_num = [] | |
show_data_list(args, area_rule) | |
# Get the quantity and bbox data corresponding to each category | |
print('\nRead the information of each picture in the dataset:') | |
progress_bar = ProgressBar(len(dataset)) | |
for index in range(len(dataset)): | |
for instance in dataset[index]['instances']: | |
if instance[ | |
'bbox_label'] in classes_idx and args.class_name is None: | |
class_num[instance['bbox_label']] += 1 | |
class_bbox[instance['bbox_label']].append(instance['bbox']) | |
elif instance['bbox_label'] in classes_idx and args.class_name: | |
class_num[0] += 1 | |
class_bbox[0].append(instance['bbox']) | |
progress_bar.update() | |
show_class_list(classes, class_num) | |
# Get the width, height and area of bbox corresponding to each category | |
print('\nRead bbox information in each class:') | |
progress_bar_classes = ProgressBar(len(classes)) | |
for idx, (classes, classes_idx) in enumerate(zip(classes, classes_idx)): | |
bbox = np.array(class_bbox[idx]) | |
bbox_area_nums = np.zeros((len(area_rule) - 1, ), dtype=np.int64) | |
if len(bbox) > 0: | |
bbox_wh = bbox[:, 2:4] - bbox[:, 0:2] | |
bbox_ratio = bbox_wh[:, 0] / bbox_wh[:, 1] | |
bbox_area = bbox_wh[:, 0] * bbox_wh[:, 1] | |
class_bbox_w.append(bbox_wh[:, 0].tolist()) | |
class_bbox_h.append(bbox_wh[:, 1].tolist()) | |
class_bbox_ratio.append(bbox_ratio.tolist()) | |
# The area rule, there is an section between two numbers | |
for i in range(len(area_rule) - 1): | |
bbox_area_nums[i] = np.logical_and( | |
bbox_area >= area_rule[i]**2, | |
bbox_area < area_rule[i + 1]**2).sum() | |
elif len(bbox) == 0: | |
class_bbox_w.append([0]) | |
class_bbox_h.append([0]) | |
class_bbox_ratio.append([0]) | |
class_name.append(classes) | |
bbox_area_num.append(bbox_area_nums.tolist()) | |
progress_bar_classes.update() | |
# 3.draw Dataset Information | |
if args.func is None: | |
show_bbox_num(cfg, args.out_dir, fig_set, class_name, class_num) | |
show_bbox_wh(args.out_dir, fig_set, class_bbox_w, class_bbox_h, | |
class_name) | |
show_bbox_wh_ratio(args.out_dir, fig_set, class_name, class_bbox_ratio) | |
show_bbox_area(args.out_dir, fig_set, area_rule, class_name, | |
bbox_area_num) | |
elif args.func == 'show_bbox_num': | |
show_bbox_num(cfg, args.out_dir, fig_set, class_name, class_num) | |
elif args.func == 'show_bbox_wh': | |
show_bbox_wh(args.out_dir, fig_set, class_bbox_w, class_bbox_h, | |
class_name) | |
elif args.func == 'show_bbox_wh_ratio': | |
show_bbox_wh_ratio(args.out_dir, fig_set, class_name, class_bbox_ratio) | |
elif args.func == 'show_bbox_area': | |
show_bbox_area(args.out_dir, fig_set, area_rule, class_name, | |
bbox_area_num) | |
else: | |
raise RuntimeError( | |
'Please enter the correct func name, e.g., show_bbox_num') | |
if __name__ == '__main__': | |
main() | |