Spaces:
Running
on
T4
Running
on
T4
from typing import List, Tuple, Union | |
import numpy as np | |
from config import ModelType | |
from numpy import ndarray | |
def softmax(x: ndarray, axis: int = -1) -> ndarray: | |
e_x = np.exp(x - np.max(x, axis=axis, keepdims=True)) | |
y = e_x / e_x.sum(axis=axis, keepdims=True) | |
return y | |
def sigmoid(x: ndarray) -> ndarray: | |
return 1. / (1. + np.exp(-x)) | |
class Decoder: | |
def __init__(self, model_type: ModelType, model_only: bool = False): | |
self.model_type = model_type | |
self.model_only = model_only | |
self.boxes_pro = [] | |
self.scores_pro = [] | |
self.labels_pro = [] | |
self.is_logging = False | |
def __call__(self, | |
feats: Union[List, Tuple], | |
conf_thres: float, | |
num_labels: int = 80, | |
**kwargs) -> Tuple: | |
if not self.is_logging: | |
print('Only support decode in batch==1') | |
self.is_logging = True | |
self.boxes_pro.clear() | |
self.scores_pro.clear() | |
self.labels_pro.clear() | |
if self.model_only: | |
# transpose channel to last dim for easy decoding | |
feats = [ | |
np.ascontiguousarray(feat[0].transpose(1, 2, 0)) | |
for feat in feats | |
] | |
else: | |
# ax620a horizonX3 transpose channel to last dim by default | |
feats = [np.ascontiguousarray(feat) for feat in feats] | |
if self.model_type == ModelType.YOLOV5: | |
self.__yolov5_decode(feats, conf_thres, num_labels, **kwargs) | |
elif self.model_type == ModelType.YOLOX: | |
self.__yolox_decode(feats, conf_thres, num_labels, **kwargs) | |
elif self.model_type in (ModelType.PPYOLOE, ModelType.PPYOLOEP): | |
self.__ppyoloe_decode(feats, conf_thres, num_labels, **kwargs) | |
elif self.model_type == ModelType.YOLOV6: | |
self.__yolov6_decode(feats, conf_thres, num_labels, **kwargs) | |
elif self.model_type == ModelType.YOLOV7: | |
self.__yolov7_decode(feats, conf_thres, num_labels, **kwargs) | |
elif self.model_type == ModelType.RTMDET: | |
self.__rtmdet_decode(feats, conf_thres, num_labels, **kwargs) | |
elif self.model_type == ModelType.YOLOV8: | |
self.__yolov8_decode(feats, conf_thres, num_labels, **kwargs) | |
else: | |
raise NotImplementedError | |
return self.boxes_pro, self.scores_pro, self.labels_pro | |
def __yolov5_decode(self, | |
feats: List[ndarray], | |
conf_thres: float, | |
num_labels: int = 80, | |
**kwargs): | |
anchors: Union[List, Tuple] = kwargs.get( | |
'anchors', | |
[[(10, 13), (16, 30), | |
(33, 23)], [(30, 61), (62, 45), | |
(59, 119)], [(116, 90), (156, 198), (373, 326)]]) | |
for i, feat in enumerate(feats): | |
stride = 8 << i | |
feat_h, feat_w, _ = feat.shape | |
anchor = anchors[i] | |
feat = sigmoid(feat) | |
feat = feat.reshape((feat_h, feat_w, len(anchor), -1)) | |
box_feat, conf_feat, score_feat = np.split(feat, [4, 5], -1) | |
hIdx, wIdx, aIdx, _ = np.where(conf_feat > conf_thres) | |
num_proposal = hIdx.size | |
if not num_proposal: | |
continue | |
score_feat = score_feat[hIdx, wIdx, aIdx] * conf_feat[hIdx, wIdx, | |
aIdx] | |
boxes = box_feat[hIdx, wIdx, aIdx] | |
labels = score_feat.argmax(-1) | |
scores = score_feat.max(-1) | |
indices = np.where(scores > conf_thres)[0] | |
if len(indices) == 0: | |
continue | |
for idx in indices: | |
a_w, a_h = anchor[aIdx[idx]] | |
x, y, w, h = boxes[idx] | |
x = (x * 2.0 - 0.5 + wIdx[idx]) * stride | |
y = (y * 2.0 - 0.5 + hIdx[idx]) * stride | |
w = (w * 2.0)**2 * a_w | |
h = (h * 2.0)**2 * a_h | |
x0 = x - w / 2 | |
y0 = y - h / 2 | |
self.scores_pro.append(float(scores[idx])) | |
self.boxes_pro.append( | |
np.array([x0, y0, w, h], dtype=np.float32)) | |
self.labels_pro.append(int(labels[idx])) | |
def __yolox_decode(self, | |
feats: List[ndarray], | |
conf_thres: float, | |
num_labels: int = 80, | |
**kwargs): | |
for i, feat in enumerate(feats): | |
stride = 8 << i | |
score_feat, box_feat, conf_feat = np.split( | |
feat, [num_labels, num_labels + 4], -1) | |
conf_feat = sigmoid(conf_feat) | |
hIdx, wIdx, _ = np.where(conf_feat > conf_thres) | |
num_proposal = hIdx.size | |
if not num_proposal: | |
continue | |
score_feat = sigmoid(score_feat[hIdx, wIdx]) * conf_feat[hIdx, | |
wIdx] | |
boxes = box_feat[hIdx, wIdx] | |
labels = score_feat.argmax(-1) | |
scores = score_feat.max(-1) | |
indices = np.where(scores > conf_thres)[0] | |
if len(indices) == 0: | |
continue | |
for idx in indices: | |
score = scores[idx] | |
label = labels[idx] | |
x, y, w, h = boxes[idx] | |
x = (x + wIdx[idx]) * stride | |
y = (y + hIdx[idx]) * stride | |
w = np.exp(w) * stride | |
h = np.exp(h) * stride | |
x0 = x - w / 2 | |
y0 = y - h / 2 | |
self.scores_pro.append(float(score)) | |
self.boxes_pro.append( | |
np.array([x0, y0, w, h], dtype=np.float32)) | |
self.labels_pro.append(int(label)) | |
def __ppyoloe_decode(self, | |
feats: List[ndarray], | |
conf_thres: float, | |
num_labels: int = 80, | |
**kwargs): | |
reg_max: int = kwargs.get('reg_max', 17) | |
dfl = np.arange(0, reg_max, dtype=np.float32) | |
for i, feat in enumerate(feats): | |
stride = 8 << i | |
score_feat, box_feat = np.split(feat, [ | |
num_labels, | |
], -1) | |
score_feat = sigmoid(score_feat) | |
_argmax = score_feat.argmax(-1) | |
_max = score_feat.max(-1) | |
indices = np.where(_max > conf_thres) | |
hIdx, wIdx = indices | |
num_proposal = hIdx.size | |
if not num_proposal: | |
continue | |
scores = _max[hIdx, wIdx] | |
boxes = box_feat[hIdx, wIdx].reshape(num_proposal, 4, reg_max) | |
boxes = softmax(boxes, -1) @ dfl | |
labels = _argmax[hIdx, wIdx] | |
for k in range(num_proposal): | |
score = scores[k] | |
label = labels[k] | |
x0, y0, x1, y1 = boxes[k] | |
x0 = (wIdx[k] + 0.5 - x0) * stride | |
y0 = (hIdx[k] + 0.5 - y0) * stride | |
x1 = (wIdx[k] + 0.5 + x1) * stride | |
y1 = (hIdx[k] + 0.5 + y1) * stride | |
w = x1 - x0 | |
h = y1 - y0 | |
self.scores_pro.append(float(score)) | |
self.boxes_pro.append( | |
np.array([x0, y0, w, h], dtype=np.float32)) | |
self.labels_pro.append(int(label)) | |
def __yolov6_decode(self, | |
feats: List[ndarray], | |
conf_thres: float, | |
num_labels: int = 80, | |
**kwargs): | |
for i, feat in enumerate(feats): | |
stride = 8 << i | |
score_feat, box_feat = np.split(feat, [ | |
num_labels, | |
], -1) | |
score_feat = sigmoid(score_feat) | |
_argmax = score_feat.argmax(-1) | |
_max = score_feat.max(-1) | |
indices = np.where(_max > conf_thres) | |
hIdx, wIdx = indices | |
num_proposal = hIdx.size | |
if not num_proposal: | |
continue | |
scores = _max[hIdx, wIdx] | |
boxes = box_feat[hIdx, wIdx] | |
labels = _argmax[hIdx, wIdx] | |
for k in range(num_proposal): | |
score = scores[k] | |
label = labels[k] | |
x0, y0, x1, y1 = boxes[k] | |
x0 = (wIdx[k] + 0.5 - x0) * stride | |
y0 = (hIdx[k] + 0.5 - y0) * stride | |
x1 = (wIdx[k] + 0.5 + x1) * stride | |
y1 = (hIdx[k] + 0.5 + y1) * stride | |
w = x1 - x0 | |
h = y1 - y0 | |
self.scores_pro.append(float(score)) | |
self.boxes_pro.append( | |
np.array([x0, y0, w, h], dtype=np.float32)) | |
self.labels_pro.append(int(label)) | |
def __yolov7_decode(self, | |
feats: List[ndarray], | |
conf_thres: float, | |
num_labels: int = 80, | |
**kwargs): | |
anchors: Union[List, Tuple] = kwargs.get( | |
'anchors', | |
[[(12, 16), (19, 36), | |
(40, 28)], [(36, 75), (76, 55), | |
(72, 146)], [(142, 110), (192, 243), (459, 401)]]) | |
self.__yolov5_decode(feats, conf_thres, num_labels, anchors=anchors) | |
def __rtmdet_decode(self, | |
feats: List[ndarray], | |
conf_thres: float, | |
num_labels: int = 80, | |
**kwargs): | |
for i, feat in enumerate(feats): | |
stride = 8 << i | |
score_feat, box_feat = np.split(feat, [ | |
num_labels, | |
], -1) | |
score_feat = sigmoid(score_feat) | |
_argmax = score_feat.argmax(-1) | |
_max = score_feat.max(-1) | |
indices = np.where(_max > conf_thres) | |
hIdx, wIdx = indices | |
num_proposal = hIdx.size | |
if not num_proposal: | |
continue | |
scores = _max[hIdx, wIdx] | |
boxes = box_feat[hIdx, wIdx] | |
labels = _argmax[hIdx, wIdx] | |
for k in range(num_proposal): | |
score = scores[k] | |
label = labels[k] | |
x0, y0, x1, y1 = boxes[k] | |
x0 = (wIdx[k] - x0) * stride | |
y0 = (hIdx[k] - y0) * stride | |
x1 = (wIdx[k] + x1) * stride | |
y1 = (hIdx[k] + y1) * stride | |
w = x1 - x0 | |
h = y1 - y0 | |
self.scores_pro.append(float(score)) | |
self.boxes_pro.append( | |
np.array([x0, y0, w, h], dtype=np.float32)) | |
self.labels_pro.append(int(label)) | |
def __yolov8_decode(self, | |
feats: List[ndarray], | |
conf_thres: float, | |
num_labels: int = 80, | |
**kwargs): | |
reg_max: int = kwargs.get('reg_max', 16) | |
self.__ppyoloe_decode(feats, conf_thres, num_labels, reg_max=reg_max) | |