stevengrove
initial commit
186701e
raw
history blame
11.1 kB
from typing import List, Tuple, Union
import numpy as np
from config import ModelType
from numpy import ndarray
def softmax(x: ndarray, axis: int = -1) -> ndarray:
e_x = np.exp(x - np.max(x, axis=axis, keepdims=True))
y = e_x / e_x.sum(axis=axis, keepdims=True)
return y
def sigmoid(x: ndarray) -> ndarray:
return 1. / (1. + np.exp(-x))
class Decoder:
def __init__(self, model_type: ModelType, model_only: bool = False):
self.model_type = model_type
self.model_only = model_only
self.boxes_pro = []
self.scores_pro = []
self.labels_pro = []
self.is_logging = False
def __call__(self,
feats: Union[List, Tuple],
conf_thres: float,
num_labels: int = 80,
**kwargs) -> Tuple:
if not self.is_logging:
print('Only support decode in batch==1')
self.is_logging = True
self.boxes_pro.clear()
self.scores_pro.clear()
self.labels_pro.clear()
if self.model_only:
# transpose channel to last dim for easy decoding
feats = [
np.ascontiguousarray(feat[0].transpose(1, 2, 0))
for feat in feats
]
else:
# ax620a horizonX3 transpose channel to last dim by default
feats = [np.ascontiguousarray(feat) for feat in feats]
if self.model_type == ModelType.YOLOV5:
self.__yolov5_decode(feats, conf_thres, num_labels, **kwargs)
elif self.model_type == ModelType.YOLOX:
self.__yolox_decode(feats, conf_thres, num_labels, **kwargs)
elif self.model_type in (ModelType.PPYOLOE, ModelType.PPYOLOEP):
self.__ppyoloe_decode(feats, conf_thres, num_labels, **kwargs)
elif self.model_type == ModelType.YOLOV6:
self.__yolov6_decode(feats, conf_thres, num_labels, **kwargs)
elif self.model_type == ModelType.YOLOV7:
self.__yolov7_decode(feats, conf_thres, num_labels, **kwargs)
elif self.model_type == ModelType.RTMDET:
self.__rtmdet_decode(feats, conf_thres, num_labels, **kwargs)
elif self.model_type == ModelType.YOLOV8:
self.__yolov8_decode(feats, conf_thres, num_labels, **kwargs)
else:
raise NotImplementedError
return self.boxes_pro, self.scores_pro, self.labels_pro
def __yolov5_decode(self,
feats: List[ndarray],
conf_thres: float,
num_labels: int = 80,
**kwargs):
anchors: Union[List, Tuple] = kwargs.get(
'anchors',
[[(10, 13), (16, 30),
(33, 23)], [(30, 61), (62, 45),
(59, 119)], [(116, 90), (156, 198), (373, 326)]])
for i, feat in enumerate(feats):
stride = 8 << i
feat_h, feat_w, _ = feat.shape
anchor = anchors[i]
feat = sigmoid(feat)
feat = feat.reshape((feat_h, feat_w, len(anchor), -1))
box_feat, conf_feat, score_feat = np.split(feat, [4, 5], -1)
hIdx, wIdx, aIdx, _ = np.where(conf_feat > conf_thres)
num_proposal = hIdx.size
if not num_proposal:
continue
score_feat = score_feat[hIdx, wIdx, aIdx] * conf_feat[hIdx, wIdx,
aIdx]
boxes = box_feat[hIdx, wIdx, aIdx]
labels = score_feat.argmax(-1)
scores = score_feat.max(-1)
indices = np.where(scores > conf_thres)[0]
if len(indices) == 0:
continue
for idx in indices:
a_w, a_h = anchor[aIdx[idx]]
x, y, w, h = boxes[idx]
x = (x * 2.0 - 0.5 + wIdx[idx]) * stride
y = (y * 2.0 - 0.5 + hIdx[idx]) * stride
w = (w * 2.0)**2 * a_w
h = (h * 2.0)**2 * a_h
x0 = x - w / 2
y0 = y - h / 2
self.scores_pro.append(float(scores[idx]))
self.boxes_pro.append(
np.array([x0, y0, w, h], dtype=np.float32))
self.labels_pro.append(int(labels[idx]))
def __yolox_decode(self,
feats: List[ndarray],
conf_thres: float,
num_labels: int = 80,
**kwargs):
for i, feat in enumerate(feats):
stride = 8 << i
score_feat, box_feat, conf_feat = np.split(
feat, [num_labels, num_labels + 4], -1)
conf_feat = sigmoid(conf_feat)
hIdx, wIdx, _ = np.where(conf_feat > conf_thres)
num_proposal = hIdx.size
if not num_proposal:
continue
score_feat = sigmoid(score_feat[hIdx, wIdx]) * conf_feat[hIdx,
wIdx]
boxes = box_feat[hIdx, wIdx]
labels = score_feat.argmax(-1)
scores = score_feat.max(-1)
indices = np.where(scores > conf_thres)[0]
if len(indices) == 0:
continue
for idx in indices:
score = scores[idx]
label = labels[idx]
x, y, w, h = boxes[idx]
x = (x + wIdx[idx]) * stride
y = (y + hIdx[idx]) * stride
w = np.exp(w) * stride
h = np.exp(h) * stride
x0 = x - w / 2
y0 = y - h / 2
self.scores_pro.append(float(score))
self.boxes_pro.append(
np.array([x0, y0, w, h], dtype=np.float32))
self.labels_pro.append(int(label))
def __ppyoloe_decode(self,
feats: List[ndarray],
conf_thres: float,
num_labels: int = 80,
**kwargs):
reg_max: int = kwargs.get('reg_max', 17)
dfl = np.arange(0, reg_max, dtype=np.float32)
for i, feat in enumerate(feats):
stride = 8 << i
score_feat, box_feat = np.split(feat, [
num_labels,
], -1)
score_feat = sigmoid(score_feat)
_argmax = score_feat.argmax(-1)
_max = score_feat.max(-1)
indices = np.where(_max > conf_thres)
hIdx, wIdx = indices
num_proposal = hIdx.size
if not num_proposal:
continue
scores = _max[hIdx, wIdx]
boxes = box_feat[hIdx, wIdx].reshape(num_proposal, 4, reg_max)
boxes = softmax(boxes, -1) @ dfl
labels = _argmax[hIdx, wIdx]
for k in range(num_proposal):
score = scores[k]
label = labels[k]
x0, y0, x1, y1 = boxes[k]
x0 = (wIdx[k] + 0.5 - x0) * stride
y0 = (hIdx[k] + 0.5 - y0) * stride
x1 = (wIdx[k] + 0.5 + x1) * stride
y1 = (hIdx[k] + 0.5 + y1) * stride
w = x1 - x0
h = y1 - y0
self.scores_pro.append(float(score))
self.boxes_pro.append(
np.array([x0, y0, w, h], dtype=np.float32))
self.labels_pro.append(int(label))
def __yolov6_decode(self,
feats: List[ndarray],
conf_thres: float,
num_labels: int = 80,
**kwargs):
for i, feat in enumerate(feats):
stride = 8 << i
score_feat, box_feat = np.split(feat, [
num_labels,
], -1)
score_feat = sigmoid(score_feat)
_argmax = score_feat.argmax(-1)
_max = score_feat.max(-1)
indices = np.where(_max > conf_thres)
hIdx, wIdx = indices
num_proposal = hIdx.size
if not num_proposal:
continue
scores = _max[hIdx, wIdx]
boxes = box_feat[hIdx, wIdx]
labels = _argmax[hIdx, wIdx]
for k in range(num_proposal):
score = scores[k]
label = labels[k]
x0, y0, x1, y1 = boxes[k]
x0 = (wIdx[k] + 0.5 - x0) * stride
y0 = (hIdx[k] + 0.5 - y0) * stride
x1 = (wIdx[k] + 0.5 + x1) * stride
y1 = (hIdx[k] + 0.5 + y1) * stride
w = x1 - x0
h = y1 - y0
self.scores_pro.append(float(score))
self.boxes_pro.append(
np.array([x0, y0, w, h], dtype=np.float32))
self.labels_pro.append(int(label))
def __yolov7_decode(self,
feats: List[ndarray],
conf_thres: float,
num_labels: int = 80,
**kwargs):
anchors: Union[List, Tuple] = kwargs.get(
'anchors',
[[(12, 16), (19, 36),
(40, 28)], [(36, 75), (76, 55),
(72, 146)], [(142, 110), (192, 243), (459, 401)]])
self.__yolov5_decode(feats, conf_thres, num_labels, anchors=anchors)
def __rtmdet_decode(self,
feats: List[ndarray],
conf_thres: float,
num_labels: int = 80,
**kwargs):
for i, feat in enumerate(feats):
stride = 8 << i
score_feat, box_feat = np.split(feat, [
num_labels,
], -1)
score_feat = sigmoid(score_feat)
_argmax = score_feat.argmax(-1)
_max = score_feat.max(-1)
indices = np.where(_max > conf_thres)
hIdx, wIdx = indices
num_proposal = hIdx.size
if not num_proposal:
continue
scores = _max[hIdx, wIdx]
boxes = box_feat[hIdx, wIdx]
labels = _argmax[hIdx, wIdx]
for k in range(num_proposal):
score = scores[k]
label = labels[k]
x0, y0, x1, y1 = boxes[k]
x0 = (wIdx[k] - x0) * stride
y0 = (hIdx[k] - y0) * stride
x1 = (wIdx[k] + x1) * stride
y1 = (hIdx[k] + y1) * stride
w = x1 - x0
h = y1 - y0
self.scores_pro.append(float(score))
self.boxes_pro.append(
np.array([x0, y0, w, h], dtype=np.float32))
self.labels_pro.append(int(label))
def __yolov8_decode(self,
feats: List[ndarray],
conf_thres: float,
num_labels: int = 80,
**kwargs):
reg_max: int = kwargs.get('reg_max', 16)
self.__ppyoloe_decode(feats, conf_thres, num_labels, reg_max=reg_max)