Spaces:
Running
on
T4
Running
on
T4
from typing import List, Tuple, Union | |
import cv2 | |
from numpy import ndarray | |
MAJOR, MINOR = map(int, cv2.__version__.split('.')[:2]) | |
assert MAJOR == 4 | |
def non_max_suppression(boxes: Union[List[ndarray], Tuple[ndarray]], | |
scores: Union[List[float], Tuple[float]], | |
labels: Union[List[int], Tuple[int]], | |
conf_thres: float = 0.25, | |
iou_thres: float = 0.65) -> Tuple[List, List, List]: | |
if MINOR >= 7: | |
indices = cv2.dnn.NMSBoxesBatched(boxes, scores, labels, conf_thres, | |
iou_thres) | |
elif MINOR == 6: | |
indices = cv2.dnn.NMSBoxes(boxes, scores, conf_thres, iou_thres) | |
else: | |
indices = cv2.dnn.NMSBoxes(boxes, scores, conf_thres, | |
iou_thres).flatten() | |
nmsd_boxes = [] | |
nmsd_scores = [] | |
nmsd_labels = [] | |
for idx in indices: | |
box = boxes[idx] | |
# x0y0wh -> x0y0x1y1 | |
box[2:] = box[:2] + box[2:] | |
score = scores[idx] | |
label = labels[idx] | |
nmsd_boxes.append(box) | |
nmsd_scores.append(score) | |
nmsd_labels.append(label) | |
return nmsd_boxes, nmsd_scores, nmsd_labels | |