File size: 11,829 Bytes
67f0d18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import gradio as gr
from pdf_processor import PDFProcessor
from utils import AI_MODELS, TRANSLATIONS

class PDFProcessorUI:
    def __init__(self):
        self.processor = PDFProcessor()
        self.current_language = "English"
        self.current_ai_model = "Huggingface / IBM granite granite 3.1 8b Instruct"
        self.current_type_model = "Api Key"
    
    def change_language(self, language):
        self.current_language = language
        self.processor.set_language(language)
        
        # Retornamos todos los textos que necesitan ser actualizados
        return [
            TRANSLATIONS[language]["title"],
            gr.update(label=TRANSLATIONS[language]["upload_pdf"]),
            gr.update(label=TRANSLATIONS[language]["chunk_size"]),
            gr.update(label=TRANSLATIONS[language]["chunk_overlap"]),
            gr.update(value=TRANSLATIONS[language]["process_btn"]),
            gr.update(label=TRANSLATIONS[language]["processing_status"]),
            gr.update(label=TRANSLATIONS[language]["qa_tab"]),
            gr.update(label=TRANSLATIONS[language]["summary_tab"]),
            gr.update(label=TRANSLATIONS[language]["specialist_tab"]),
            gr.update(label=TRANSLATIONS[language]["mini_summary_title"]),
            gr.update(label=TRANSLATIONS[language]["mini_analysis_title"]),
            gr.update(placeholder=TRANSLATIONS[language]["chat_placeholder"]),
            TRANSLATIONS[language]["chat_title"],
            gr.update(value=TRANSLATIONS[language]["chat_btn"]),
            gr.update(value=TRANSLATIONS[language]["generate_summary"]),
            gr.update(label=TRANSLATIONS[language]["summary_label"]),
            gr.update(label=TRANSLATIONS[language]["ai_model"]),
            TRANSLATIONS[language]["specialist_title"],
            gr.update(label=TRANSLATIONS[language]["specialist_label"]),
            gr.update(label=TRANSLATIONS[language]["specialist_output"]),
            gr.update(value=TRANSLATIONS[language]["specialist_btn"])
        ]
    
    def change_ai_model(self, ai_model):
        self.current_ai_model = ai_model
        if ai_model == "IBM Granite3.1 dense / Ollama local":
            return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False, maximum=2048), gr.update(visible=False, maximum=200)
        elif ai_model == "Open AI / GPT-4o-mini":
            return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False, maximum=2048), gr.update(visible=False, maximum=200)
        else:
            return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False, maximum=500), gr.update(visible=False, maximum=100)
    
    def change_type_model(self, type_model):
        self.current_type_model = type_model
        if type_model == "Api Key":
            if self.current_ai_model == "IBM Granite3.1 dense / Ollama local":
                return gr.update(visible=False), gr.update(visible=False)
            else:
                return gr.update(visible=True), gr.update(visible=False)
        else:
            return gr.update(visible=False), gr.update(visible=False)
    
    def process_pdf(self, pdf_file, chunk_size, chunk_overlap, ai_model, type_model, api_key, project_id_watsonx):
        return self.processor.process_pdf(pdf_file, chunk_size, chunk_overlap, ai_model, type_model, api_key, project_id_watsonx)
    
    def qa_interface(self, message, history, ai_model, type_model, api_key, project_id_watsonx):
        return self.processor.get_qa_response(message, history, ai_model, type_model, api_key, project_id_watsonx)
    
    def summarize_interface(self, ai_model, type_model, api_key, project_id_watsonx):
        return self.processor.get_summary(ai_model, type_model, api_key, project_id_watsonx)
    
    def specialist_opinion(self, ai_model, type_model, api_key, project_id_watsonx, specialist_prompt):
        return self.processor.get_specialist_opinion(ai_model, type_model, api_key, project_id_watsonx, specialist_prompt)
    
    def upload_file(files):
        file_paths = [file.name for file in files]
        return file_paths[0]
    
    def create_ui(self):
        with gr.Blocks() as demo:
            title = gr.Markdown(TRANSLATIONS[self.current_language]["title"])
            
            with gr.Row():
                language_dropdown = gr.Dropdown(
                    choices=list(TRANSLATIONS.keys()),
                    value=self.current_language,
                    label="Language/Idioma/Sprache/Langue/Língua",
                    key="language_dropdown" 
                )
                ai_model_dropdown = gr.Dropdown(
                    choices=list(AI_MODELS.keys()),
                    value=self.current_ai_model,
                    label= TRANSLATIONS[self.current_language]["ai_model"],
                    key="ai_model_dropdown"
                )
            
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        pdf_file = gr.File(
                            label=TRANSLATIONS[self.current_language]["upload_pdf"],
                            file_types=[".pdf"]
                        )
                        with gr.Column():
                            type_model=gr.Radio(choices=["Local", "Api Key"], label=TRANSLATIONS[self.current_language]["model_type"], visible=False, value="Api Key")
                            api_key_input = gr.Textbox(label="Api Key", placeholder=TRANSLATIONS[self.current_language]["api_key_placeholder"], visible=False)
                            project_id_watsonx = gr.Textbox(label="Project ID", placeholder=TRANSLATIONS[self.current_language]["project_id_placeholder"], visible=False)
                    chunk_size = gr.Slider(
                        value=250,
                        label=TRANSLATIONS[self.current_language]["chunk_size"],
                        minimum=100,
                        maximum=500,
                        step=10,
                        visible=False
                    )
                    chunk_overlap = gr.Slider(
                        value=25,
                        label=TRANSLATIONS[self.current_language]["chunk_overlap"],
                        minimum=10,
                        maximum=100,
                        step=5,
                        visible=False
                    )
                    process_btn = gr.Button(
                        TRANSLATIONS[self.current_language]["process_btn"]
                    )
                    process_output = gr.Textbox(
                        label=TRANSLATIONS[self.current_language]["processing_status"]
                    )
            
            with gr.Tabs() as tabs:
                qa_tab = gr.Tab(TRANSLATIONS[self.current_language]["qa_tab"])
                summary_tab = gr.Tab(TRANSLATIONS[self.current_language]["summary_tab"])
                specialist_tab = gr.Tab(TRANSLATIONS[self.current_language]["specialist_tab"])
            with qa_tab:
                chat_title = gr.Markdown(TRANSLATIONS[self.current_language]["chat_title"])
                chat_placeholder = gr.Textbox(
                    placeholder=TRANSLATIONS[self.current_language]["chat_placeholder"],
                    container=False,
                    show_label=False
                )
                chat_btn = gr.Button(TRANSLATIONS[self.current_language]["chat_btn"])
                chatbot = gr.Markdown(height=400)
            
            with summary_tab:
                with gr.Accordion(TRANSLATIONS[self.current_language]["mini_analysis_title"], open=False, visible=False):
                    minisummaries_output = gr.Textbox(
                        label=TRANSLATIONS[self.current_language]["mini_analysis_title"],
                        lines=10
                    )
                summary_output = gr.Textbox(
                    label=TRANSLATIONS[self.current_language]["summary_label"],
                    lines=10
                )
                summarize_btn = gr.Button(
                    TRANSLATIONS[self.current_language]["generate_summary"]
                )
            
            with specialist_tab:
                specialist_title = gr.Markdown(TRANSLATIONS[self.current_language]["specialist_title"])
                specialist_placeholder = gr.Textbox(
                    label=TRANSLATIONS[self.current_language]["specialist_label"],
                    lines=10
                )
                with gr.Accordion(TRANSLATIONS[self.current_language]["mini_analysis_title"], open=False, visible=False):
                    minianalysis_output = gr.Textbox(
                        label=TRANSLATIONS[self.current_language]["mini_analysis_title"],
                        lines=10
                    )
                specialist_output = gr.Textbox(label=TRANSLATIONS[self.current_language]["specialist_output"], lines=20)
                specialist_btn = gr.Button(TRANSLATIONS[self.current_language]["specialist_btn"])

            
            language_dropdown.change(
                fn=self.change_language,
                inputs=[language_dropdown],
                outputs=[
                    title,
                    pdf_file,
                    chunk_size,
                    chunk_overlap,
                    process_btn,
                    process_output,
                    qa_tab,
                    summary_tab,
                    specialist_tab,
                    minisummaries_output,
                    minianalysis_output,
                    chat_placeholder,
                    chat_title,
                    chat_btn,
                    summarize_btn,
                    summary_output,
                    ai_model_dropdown,
                    specialist_title,
                    specialist_placeholder,
                    specialist_output,
                    specialist_btn
                ]
            )

            ai_model_dropdown.change(
                fn=self.change_ai_model,
                inputs=[ai_model_dropdown],
                outputs=[type_model, api_key_input, project_id_watsonx, chunk_size, chunk_overlap]
            )

            type_model.change(
                fn=self.change_type_model,
                inputs=[type_model],
                outputs=[api_key_input,project_id_watsonx]
            )
            
            chat_placeholder.submit(
                fn=self.qa_interface,
                inputs=[chat_placeholder, chatbot, ai_model_dropdown, type_model, api_key_input, project_id_watsonx],
                outputs=[chatbot]
            )
            
            process_btn.click(
                fn=self.process_pdf,
                inputs=[pdf_file, chunk_size, chunk_overlap, ai_model_dropdown, type_model, api_key_input, project_id_watsonx],
                outputs=[process_output]
            )
            
            summarize_btn.click(
                fn=self.summarize_interface,
                inputs=[ai_model_dropdown, type_model, api_key_input, project_id_watsonx],
                outputs=[summary_output]
            )

            specialist_btn.click(
                fn=self.specialist_opinion,
                inputs=[ai_model_dropdown, type_model, api_key_input, project_id_watsonx, specialist_placeholder],
                outputs=[specialist_output]
            )

            chat_btn.click(
                fn=self.qa_interface,
                inputs=[chat_placeholder, chatbot, ai_model_dropdown, type_model, api_key_input, project_id_watsonx],
                outputs=[chatbot]
            )
        
        return demo

if __name__ == "__main__":
    ui = PDFProcessorUI()
    demo = ui.create_ui()
    demo.launch()