Spaces:
Running
Running
omitakahiro
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,44 @@
|
|
1 |
import json
|
2 |
import os
|
3 |
|
|
|
4 |
import requests
|
5 |
import streamlit as st
|
6 |
|
7 |
CHATBOT_ENDPOINT = os.environ["CHATBOT_ENDPOINT"]
|
8 |
TOKEN = os.environ["TOKEN"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def generate(prompt):
|
11 |
|
12 |
try:
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
19 |
)
|
20 |
-
|
21 |
-
for s in
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
except:
|
28 |
-
pass
|
29 |
except:
|
30 |
-
yield "
|
|
|
31 |
|
32 |
-
intro = """This is a demo site for Stockmark-LLM-100b. This service is running on AWS Inferentia2.
|
33 |
- Pretrained model: [stockmark/stockmark-100b](https://huggingface.co/stockmark/stockmark-100b)
|
34 |
- Instruction tuned model: [stockmark/stockmark-100b-instruct-v0.1](https://huggingface.co/stockmark/stockmark-100b-instruct-v0.1)
|
35 |
"""
|
@@ -39,6 +48,42 @@ disclaimer = """
|
|
39 |
- We may use users chat data in this demo to improve our LLM.
|
40 |
"""
|
41 |
|
42 |
-
|
43 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
|
|
|
|
|
|
|
1 |
import json
|
2 |
import os
|
3 |
|
4 |
+
import openai
|
5 |
import requests
|
6 |
import streamlit as st
|
7 |
|
8 |
CHATBOT_ENDPOINT = os.environ["CHATBOT_ENDPOINT"]
|
9 |
TOKEN = os.environ["TOKEN"]
|
10 |
+
MAINTENANCE = os.environ.get("MAINTENANCE", 0)
|
11 |
+
|
12 |
+
client = openai.OpenAI(
|
13 |
+
base_url=CHATBOT_ENDPOINT,
|
14 |
+
api_key=TOKEN,
|
15 |
+
timeout=60
|
16 |
+
)
|
17 |
|
18 |
def generate(prompt):
|
19 |
|
20 |
try:
|
21 |
+
completion = client.chat.completions.create(
|
22 |
+
model="stockmark/stockmark-100b-instruct-merged-v0.1",
|
23 |
+
messages=[{"role": "user", "content": prompt}],
|
24 |
+
extra_body={"repetition_penalty": 1.05},
|
25 |
+
max_tokens=256,
|
26 |
+
temperature=0.5,
|
27 |
+
top_p=0.95,
|
28 |
+
stream=True
|
29 |
)
|
30 |
+
|
31 |
+
for s in completion:
|
32 |
+
s = s.choices[0].delta.content
|
33 |
+
if s:
|
34 |
+
if s == "\n":
|
35 |
+
s = " \n"
|
36 |
+
yield s
|
|
|
|
|
37 |
except:
|
38 |
+
yield "<<予期せぬエラーが発生しております。しばらくしてからアクセスください。>>"
|
39 |
+
|
40 |
|
41 |
+
intro = """This is a demo site for Stockmark-LLM-100b. This service is running on AWS Inferentia2. Currently, the response is sometimes slow due to many requests to the server.
|
42 |
- Pretrained model: [stockmark/stockmark-100b](https://huggingface.co/stockmark/stockmark-100b)
|
43 |
- Instruction tuned model: [stockmark/stockmark-100b-instruct-v0.1](https://huggingface.co/stockmark/stockmark-100b-instruct-v0.1)
|
44 |
"""
|
|
|
48 |
- We may use users chat data in this demo to improve our LLM.
|
49 |
"""
|
50 |
|
51 |
+
if MAINTENANCE:
|
52 |
+
st.title("Stockmark-LLM-100b")
|
53 |
+
st.markdown("ただいまメンテナンス中です。申し訳ありませんが、しばらくしてからアクセスしてください。")
|
54 |
+
st.stop()
|
55 |
+
|
56 |
+
tab1, tab2 = st.tabs(["Demo", "Disclaimer"])
|
57 |
+
|
58 |
+
with tab1:
|
59 |
+
st.title("Stockmark-LLM-100b")
|
60 |
+
st.markdown(intro)
|
61 |
+
|
62 |
+
prompt = st.session_state.get("prompt", "")
|
63 |
+
response = st.session_state.get("response", "")
|
64 |
+
|
65 |
+
if prompt == "" or response:
|
66 |
+
print("new_session")
|
67 |
+
prompt_new = st.text_area("Prompt:")
|
68 |
+
if prompt_new:
|
69 |
+
st.session_state["prompt"] = prompt_new
|
70 |
+
st.session_state["response"] = ""
|
71 |
+
st.rerun()
|
72 |
+
else:
|
73 |
+
prompt = st.text_area("Prompt:", value=prompt, disabled=True)
|
74 |
+
|
75 |
+
if prompt:
|
76 |
+
|
77 |
+
if response:
|
78 |
+
with st.chat_message("assistant"):
|
79 |
+
st.write(response)
|
80 |
+
else:
|
81 |
+
with st.chat_message("assistant"):
|
82 |
+
response = st.write_stream(generate(prompt))
|
83 |
+
|
84 |
+
st.session_state["response"] = response
|
85 |
+
st.rerun()
|
86 |
|
87 |
+
with tab2:
|
88 |
+
st.title("Stockmark-LLM-100b: Disclaimer")
|
89 |
+
st.markdown(disclaimer)
|