Sara Tolosa
commited on
Commit
•
025e1b4
1
Parent(s):
75059ff
Cat vs Dog classifier
Browse files
app2.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This script is used to create a Gradio interface in which we have a
|
2 |
+
# dog vs cat classifier using the fastai library. For more explanation,
|
3 |
+
# visit the Google Colab notebook associated.
|
4 |
+
|
5 |
+
from fastai.vision.all import *
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
# Define label function
|
9 |
+
def is_cat(x): return x[0].isupper()
|
10 |
+
|
11 |
+
# Load our model
|
12 |
+
learner = load_learner('model.pkl')
|
13 |
+
|
14 |
+
|
15 |
+
# Transform our model to obtain results that Gradio can handle with
|
16 |
+
categories = ('Dog', 'Cat')
|
17 |
+
|
18 |
+
def classify_image(img):
|
19 |
+
# We are saying that this predictions returns: the prediction, its index and the prediction probability
|
20 |
+
pred,idx,probs = learn.predict(img)
|
21 |
+
|
22 |
+
# Here we return a dictionary with categories as keys and its probabilities as values
|
23 |
+
return dict(zip(categories, map(float, probs)))
|
24 |
+
|
25 |
+
|
26 |
+
# Create the Gradio interface
|
27 |
+
image = gr.inputs.Image(shape=(192,192))
|
28 |
+
label = gr.outputs.Label()
|
29 |
+
examples = ['dogg.jpg', 'cat.jpg', 'dunno.jpg']
|
30 |
+
|
31 |
+
intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
|
32 |
+
intf.launch(inline=False, share=True)
|