Spaces:
Runtime error
Runtime error
Commit
·
16034fb
0
Parent(s):
Duplicate from storresbusquets/demo1
Browse files- .gitattributes +35 -0
- README.md +14 -0
- app.py +156 -0
- requirements.txt +6 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Demo1
|
3 |
+
emoji: 🚀
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: indigo
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.42.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
+
duplicated_from: storresbusquets/demo1
|
12 |
+
---
|
13 |
+
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import whisper
|
3 |
+
from pytube import YouTube
|
4 |
+
from transformers import pipeline, T5Tokenizer, T5ForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM
|
5 |
+
|
6 |
+
class GradioInference():
|
7 |
+
def __init__(self):
|
8 |
+
self.sizes = list(whisper._MODELS.keys())
|
9 |
+
self.langs = ["none"] + sorted(list(whisper.tokenizer.LANGUAGES.values()))
|
10 |
+
self.current_size = "base"
|
11 |
+
self.loaded_model = whisper.load_model(self.current_size)
|
12 |
+
self.yt = None
|
13 |
+
self.summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
14 |
+
|
15 |
+
# Initialize VoiceLabT5 model and tokenizer
|
16 |
+
self.keyword_model = T5ForConditionalGeneration.from_pretrained("Voicelab/vlt5-base-keywords")
|
17 |
+
self.keyword_tokenizer = T5Tokenizer.from_pretrained("Voicelab/vlt5-base-keywords")
|
18 |
+
|
19 |
+
# Sentiment Classifier
|
20 |
+
self.classifier = pipeline("text-classification")
|
21 |
+
|
22 |
+
def __call__(self, link, lang, size):
|
23 |
+
if self.yt is None:
|
24 |
+
self.yt = YouTube(link)
|
25 |
+
path = self.yt.streams.filter(only_audio=True)[0].download(filename="tmp.mp4")
|
26 |
+
|
27 |
+
if lang == "none":
|
28 |
+
lang = None
|
29 |
+
|
30 |
+
if size != self.current_size:
|
31 |
+
self.loaded_model = whisper.load_model(size)
|
32 |
+
self.current_size = size
|
33 |
+
|
34 |
+
results = self.loaded_model.transcribe(path, language=lang)
|
35 |
+
|
36 |
+
# Perform summarization on the transcription
|
37 |
+
transcription_summary = self.summarizer(results["text"], max_length=130, min_length=30, do_sample=False)
|
38 |
+
|
39 |
+
# Extract keywords using VoiceLabT5
|
40 |
+
task_prefix = "Keywords: "
|
41 |
+
input_sequence = task_prefix + results["text"]
|
42 |
+
input_ids = self.keyword_tokenizer(input_sequence, return_tensors="pt", truncation=False).input_ids
|
43 |
+
output = self.keyword_model.generate(input_ids, no_repeat_ngram_size=3, num_beams=4)
|
44 |
+
predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True)
|
45 |
+
keywords = [x.strip() for x in predicted.split(',') if x.strip()]
|
46 |
+
|
47 |
+
label = self.classifier(results["text"])[0]["label"]
|
48 |
+
|
49 |
+
return results["text"], transcription_summary[0]["summary_text"], keywords, label
|
50 |
+
|
51 |
+
def populate_metadata(self, link):
|
52 |
+
self.yt = YouTube(link)
|
53 |
+
return self.yt.thumbnail_url, self.yt.title
|
54 |
+
|
55 |
+
|
56 |
+
def from_audio_input(self, lang, size, audio_file):
|
57 |
+
if lang == "none":
|
58 |
+
lang = None
|
59 |
+
|
60 |
+
if size != self.current_size:
|
61 |
+
self.loaded_model = whisper.load_model(size)
|
62 |
+
self.current_size = size
|
63 |
+
|
64 |
+
results = self.loaded_model.transcribe(audio_file, language=lang)
|
65 |
+
|
66 |
+
# Perform summarization on the transcription
|
67 |
+
transcription_summary = self.summarizer(results["text"], max_length=130, min_length=30, do_sample=False)
|
68 |
+
|
69 |
+
# Extract keywords using VoiceLabT5
|
70 |
+
task_prefix = "Keywords: "
|
71 |
+
input_sequence = task_prefix + results["text"]
|
72 |
+
input_ids = self.keyword_tokenizer(input_sequence, return_tensors="pt", truncation=False).input_ids
|
73 |
+
output = self.keyword_model.generate(input_ids, no_repeat_ngram_size=3, num_beams=4)
|
74 |
+
predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True)
|
75 |
+
keywords = [x.strip() for x in predicted.split(',') if x.strip()]
|
76 |
+
|
77 |
+
label = self.classifier(results["text"])[0]["label"]
|
78 |
+
|
79 |
+
return results["text"], transcription_summary[0]["summary_text"], keywords, label
|
80 |
+
|
81 |
+
|
82 |
+
gio = GradioInference()
|
83 |
+
title = "Youtube Insights"
|
84 |
+
description = "Your AI-powered video analytics tool"
|
85 |
+
|
86 |
+
block = gr.Blocks()
|
87 |
+
with block as demo:
|
88 |
+
gr.HTML(
|
89 |
+
"""
|
90 |
+
<div style="text-align: center; max-width: 500px; margin: 0 auto;">
|
91 |
+
<div>
|
92 |
+
<h1>Youtube <span style="color: red;">Insights</span> 📹</h1>
|
93 |
+
</div>
|
94 |
+
<p style="margin-bottom: 10px; font-size: 94%">
|
95 |
+
Your AI-powered video analytics tool
|
96 |
+
</p>
|
97 |
+
</div>
|
98 |
+
"""
|
99 |
+
)
|
100 |
+
with gr.Group():
|
101 |
+
with gr.Tab("From YouTube"):
|
102 |
+
with gr.Box():
|
103 |
+
with gr.Row().style(equal_height=True):
|
104 |
+
size = gr.Dropdown(label="Model Size", choices=gio.sizes, value='base')
|
105 |
+
lang = gr.Dropdown(label="Language (Optional)", choices=gio.langs, value="none")
|
106 |
+
link = gr.Textbox(label="YouTube Link", placeholder="Enter YouTube link...")
|
107 |
+
title = gr.Label(label="Video Title")
|
108 |
+
with gr.Row().style(equal_height=True):
|
109 |
+
img = gr.Image(label="Thumbnail")
|
110 |
+
text = gr.Textbox(label="Transcription", placeholder="Transcription Output...", lines=10).style(show_copy_button=True, container=True)
|
111 |
+
with gr.Row().style(equal_height=True):
|
112 |
+
summary = gr.Textbox(label="Summary", placeholder="Summary Output...", lines=5).style(show_copy_button=True, container=True)
|
113 |
+
keywords = gr.Textbox(label="Keywords", placeholder="Keywords Output...", lines=5).style(show_copy_button=True, container=True)
|
114 |
+
label = gr.Label(label="Sentiment Analysis")
|
115 |
+
with gr.Row().style(equal_height=True):
|
116 |
+
clear = gr.ClearButton([link, title, img, text, summary, keywords, label], scale=1)
|
117 |
+
btn = gr.Button("Get video insights", variant='primary', scale=1)
|
118 |
+
btn.click(gio, inputs=[link, lang, size], outputs=[text, summary, keywords, label])
|
119 |
+
link.change(gio.populate_metadata, inputs=[link], outputs=[img, title])
|
120 |
+
|
121 |
+
with gr.Tab("From Audio file"):
|
122 |
+
with gr.Box():
|
123 |
+
with gr.Row().style(equal_height=True):
|
124 |
+
size = gr.Dropdown(label="Model Size", choices=gio.sizes, value='base')
|
125 |
+
lang = gr.Dropdown(label="Language (Optional)", choices=gio.langs, value="none")
|
126 |
+
audio_file = gr.Audio(type="filepath")
|
127 |
+
with gr.Row().style(equal_height=True):
|
128 |
+
text = gr.Textbox(label="Transcription", placeholder="Transcription Output...", lines=10).style(show_copy_button=True, container=False)
|
129 |
+
with gr.Row().style(equal_height=True):
|
130 |
+
summary = gr.Textbox(label="Summary", placeholder="Summary Output", lines=5)
|
131 |
+
keywords = gr.Textbox(label="Keywords", placeholder="Keywords Output", lines=5)
|
132 |
+
label = gr.Label(label="Sentiment Analysis")
|
133 |
+
with gr.Row().style(equal_height=True):
|
134 |
+
clear = gr.ClearButton([text], scale=1)
|
135 |
+
btn = gr.Button("Get video insights", variant='primary', scale=1) # Updated button label
|
136 |
+
btn.click(gio.from_audio_input, inputs=[lang, size, audio_file], outputs=[text, summary, keywords, label])
|
137 |
+
|
138 |
+
|
139 |
+
with block:
|
140 |
+
gr.Markdown("About the app:")
|
141 |
+
|
142 |
+
with gr.Accordion("What is YouTube Insights?", open=False):
|
143 |
+
gr.Markdown("YouTube Insights is a tool developed with academic purposes only, that creates summaries, keywords and sentiments analysis based on YouTube videos or user audio files.")
|
144 |
+
|
145 |
+
with gr.Accordion("How does it work?", open=False):
|
146 |
+
gr.Markdown("Works by using OpenAI's Whisper, DistilBART for summarization and VoiceLabT5 for Keyword Extraction.")
|
147 |
+
|
148 |
+
gr.HTML("""
|
149 |
+
<div style="text-align: center; max-width: 500px; margin: 0 auto;">
|
150 |
+
<p style="margin-bottom: 10px; font-size: 96%">
|
151 |
+
2023 Master in Big Data & Data Science - Universidad Complutense de Madrid
|
152 |
+
</p>
|
153 |
+
</div>
|
154 |
+
""")
|
155 |
+
|
156 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
openai-whisper
|
2 |
+
transformers
|
3 |
+
torch
|
4 |
+
yake
|
5 |
+
pytube
|
6 |
+
sentencepiece
|