Spaces:
Runtime error
Runtime error
stphtan94117
commited on
Commit
·
12a0fbc
1
Parent(s):
563db0d
Update app.py
Browse files
app.py
CHANGED
@@ -28,20 +28,26 @@ for i, url in enumerate(file_urls):
|
|
28 |
f"image_{i}.jpg"
|
29 |
)
|
30 |
|
31 |
-
|
32 |
path = [['image_0.jpg'], ['image_1.jpg']]
|
33 |
video_path = [['video.mp4']]
|
34 |
|
35 |
-
def show_preds_image(
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
inputs_image = [
|
46 |
gr.components.Image(type="filepath", label="Input Image"),
|
47 |
]
|
@@ -57,6 +63,40 @@ interface_image = gr.Interface(
|
|
57 |
cache_examples=False,
|
58 |
)
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
gr.TabbedInterface(
|
62 |
[interface_image],
|
|
|
28 |
f"image_{i}.jpg"
|
29 |
)
|
30 |
|
31 |
+
model = YOLO('crack.pt')
|
32 |
path = [['image_0.jpg'], ['image_1.jpg']]
|
33 |
video_path = [['video.mp4']]
|
34 |
|
35 |
+
def show_preds_image(image_path):
|
36 |
+
image = cv2.imread(image_path)
|
37 |
+
outputs = model.predict(source=image_path)
|
38 |
+
results.plot(conf=True, boxes=False, masks=True)
|
39 |
+
results = outputs[0].cpu().numpy()
|
40 |
+
for i, det in enumerate(results.boxes.xyxy):
|
41 |
+
cv2.rectangle(
|
42 |
+
image,
|
43 |
+
(int(det[0]), int(det[1])),
|
44 |
+
(int(det[2]), int(det[3])),
|
45 |
+
color=(0, 0, 255),
|
46 |
+
thickness=2,
|
47 |
+
lineType=cv2.LINE_AA
|
48 |
+
)
|
49 |
+
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
50 |
+
|
51 |
inputs_image = [
|
52 |
gr.components.Image(type="filepath", label="Input Image"),
|
53 |
]
|
|
|
63 |
cache_examples=False,
|
64 |
)
|
65 |
|
66 |
+
# def show_preds_video(video_path):
|
67 |
+
# cap = cv2.VideoCapture(video_path)
|
68 |
+
# while(cap.isOpened()):
|
69 |
+
# ret, frame = cap.read()
|
70 |
+
# if ret:
|
71 |
+
# frame_copy = frame.copy()
|
72 |
+
# outputs = model.predict(source=frame)
|
73 |
+
# results = outputs[0].cpu().numpy()
|
74 |
+
# for i, det in enumerate(results.boxes.xyxy):
|
75 |
+
# cv2.rectangle(
|
76 |
+
# frame_copy,
|
77 |
+
# (int(det[0]), int(det[1])),
|
78 |
+
# (int(det[2]), int(det[3])),
|
79 |
+
# color=(0, 0, 255),
|
80 |
+
# thickness=2,
|
81 |
+
# lineType=cv2.LINE_AA
|
82 |
+
# )
|
83 |
+
# yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
|
84 |
+
|
85 |
+
# inputs_video = [
|
86 |
+
# gr.components.Video(type="filepath", label="Input Video"),
|
87 |
+
|
88 |
+
# ]
|
89 |
+
# outputs_video = [
|
90 |
+
# gr.components.Image(type="numpy", label="Output Image"),
|
91 |
+
# ]
|
92 |
+
# interface_video = gr.Interface(
|
93 |
+
# fn=show_preds_video,
|
94 |
+
# inputs=inputs_video,
|
95 |
+
# outputs=outputs_video,
|
96 |
+
# title="Pothole detector",
|
97 |
+
# examples=video_path,
|
98 |
+
# cache_examples=False,
|
99 |
+
# )
|
100 |
|
101 |
gr.TabbedInterface(
|
102 |
[interface_image],
|