Spaces:
Sleeping
Sleeping
File size: 1,440 Bytes
c3dc61c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
"""
Run a Flask REST API exposing one or more YOLOv5s models
"""
import argparse
import io
import torch
from flask import Flask, request
from PIL import Image
app = Flask(__name__)
models = {}
DETECTION_URL = '/v1/object-detection/<model>'
@app.route(DETECTION_URL, methods=['POST'])
def predict(model):
if request.method != 'POST':
return
if request.files.get('image'):
# Method 1
# with request.files["image"] as f:
# im = Image.open(io.BytesIO(f.read()))
# Method 2
im_file = request.files['image']
im_bytes = im_file.read()
im = Image.open(io.BytesIO(im_bytes))
if model in models:
results = models[model](im, size=640) # reduce size=320 for faster inference
return results.pandas().xyxy[0].to_json(orient='records')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Flask API exposing YOLOv5 model')
parser.add_argument('--port', default=5000, type=int, help='port number')
parser.add_argument('--model', nargs='+', default=['yolov5s'], help='model(s) to run, i.e. --model yolov5n yolov5s')
opt = parser.parse_args()
for m in opt.model:
models[m] = torch.hub.load('ultralytics/yolov5', m, force_reload=True, skip_validation=True)
app.run(host='0.0.0.0', port=opt.port) # debug=True causes Restarting with stat
|