Spaces:
Sleeping
Sleeping
stphtan94117
commited on
Commit
·
0427a05
1
Parent(s):
dac41c1
Update app.py
Browse files
app.py
CHANGED
@@ -1,44 +1,57 @@
|
|
1 |
-
import glob
|
2 |
-
|
3 |
import gradio as gr
|
|
|
4 |
import yolov5
|
5 |
-
from PIL import Image
|
6 |
-
# import torch
|
7 |
-
from huggingface_hub import hf_hub_download
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
]
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
gr.inputs.Dropdown(model_names, label="Model", default=model_names[0]),
|
31 |
-
gr.Slider(maximum=1, step=0.01, value=0.70)]
|
32 |
-
|
33 |
-
|
34 |
-
examples = [[str(file),model_names[0], 0.70] for file in glob.glob("./sample/*.jpg")]
|
35 |
-
|
36 |
-
demo=gr.Interface(fn=yolo_inference,
|
37 |
-
inputs=inputs,
|
38 |
-
outputs=gr.Image(type="pil", label="annotated document").style(height=800),
|
39 |
-
title=title,
|
40 |
-
theme="huggingface",
|
41 |
-
examples=examples)
|
42 |
-
|
43 |
-
if __name__ == "__main__":
|
44 |
-
demo.launch(debug=True)
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
import yolov5
|
|
|
|
|
|
|
4 |
|
5 |
+
# Images
|
6 |
+
torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg')
|
7 |
+
torch.hub.download_url_to_file('https://raw.githubusercontent.com/WongKinYiu/yolov7/main/inference/images/image3.jpg', 'image3.jpg')
|
8 |
+
|
9 |
+
def yolov5_inference(
|
10 |
+
image: gr.inputs.Image = None,
|
11 |
+
model_path: gr.inputs.Dropdown = None,
|
12 |
+
image_size: gr.inputs.Slider = 640,
|
13 |
+
conf_threshold: gr.inputs.Slider = 0.25,
|
14 |
+
iou_threshold: gr.inputs.Slider = 0.45,
|
15 |
+
):
|
16 |
+
"""
|
17 |
+
YOLOv5 inference function
|
18 |
+
Args:
|
19 |
+
image: Input image
|
20 |
+
model_path: Path to the model
|
21 |
+
image_size: Image size
|
22 |
+
conf_threshold: Confidence threshold
|
23 |
+
iou_threshold: IOU threshold
|
24 |
+
Returns:
|
25 |
+
Rendered image
|
26 |
+
"""
|
27 |
+
model = yolov5.load(model_path, device="cpu")
|
28 |
+
model.conf = conf_threshold
|
29 |
+
model.iou = iou_threshold
|
30 |
+
results = model([image], size=image_size)
|
31 |
+
return results.render()[0]
|
32 |
+
|
33 |
+
|
34 |
+
inputs = [
|
35 |
+
gr.inputs.Image(type="pil", label="Input Image"),
|
36 |
+
gr.inputs.Dropdown(["plate.pt", "yolov5m.pt", "yolov5l.pt", "yolov5x.pt"], label="Model"),
|
37 |
+
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
|
38 |
+
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
|
39 |
+
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
|
40 |
]
|
41 |
|
42 |
+
outputs = gr.outputs.Image(type="filepath", label="Output Image")
|
43 |
+
title = "YOLOv5"
|
44 |
+
description = "YOLOv5 is a family of object detection models pretrained on COCO dataset. This model is a pip implementation of the original YOLOv5 model."
|
45 |
+
|
46 |
+
examples = [['zidane.jpg', 'yolov5s.pt', 640, 0.25, 0.45], ['image3.jpg', 'yolov5s.pt', 640, 0.25, 0.45]]
|
47 |
+
demo_app = gr.Interface(
|
48 |
+
fn=yolov5_inference,
|
49 |
+
inputs=inputs,
|
50 |
+
outputs=outputs,
|
51 |
+
title=title,
|
52 |
+
examples=examples,
|
53 |
+
cache_examples=True,
|
54 |
+
live=True,
|
55 |
+
theme='huggingface',
|
56 |
+
)
|
57 |
+
demo_app.launch(debug=True, enable_queue=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|