import gradio as gr import torch from PIL import Image import json from ultralytics import YOLO # Images torch.hub.download_url_to_file( 'https://i.imgur.com/4GmZXID.jpg', '1.jpg') torch.hub.download_url_to_file( 'https://i.imgur.com/ktIGRvs.jpg', '2.jpg') torch.hub.download_url_to_file( 'https://i.imgur.com/fSEsXoE.jpg', '3.jpg') torch.hub.download_url_to_file( 'https://i.imgur.com/lsVJRzd.jpg', '4.jpg') torch.hub.download_url_to_file( 'https://i.imgur.com/1OFmJd1.jpg', '5.jpg') torch.hub.download_url_to_file( 'https://i.imgur.com/GhfAWMJ.jpg', '6.jpg') # Model # model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # force_reload=True to update model = torch.hub.load('ultralytics/yolov5', 'custom', path='plate.pt', source="local") def yolo(im): model.conf = 0.6 # NMS confidence threshold # g = (size / max(im.size)) # gain # im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS) # resize results = model(im, size=1280) # inference results.render() # updates results.imgs with boxes and labels df = results.pandas().xyxy[0].sort_values('xmin')[['name']].to_json(orient="records") # 可以把[['name']]刪除即可顯示全部 res = json.loads(df) return [Image.fromarray(results.ims[0]), res] inputs = gr.inputs.Image(type='pil', label="Original Image") outputs = [gr.outputs.Image(type="pil", label="Output Image"), gr.outputs.JSON(label="Output JSON")] title = "TW_plate_number" description = "TW_plate_number" examples = [['1.jpg'], ['2.jpg'], ['3.jpg'], ['4.jpg'], ['5.jpg'], ['6.jpg']] gr.Interface(yolo, inputs, outputs, title=title, description=description, examples=examples, theme="huggingface").launch(enable_queue=True, share = True)