streiluc commited on
Commit
22d4b15
1 Parent(s): b9324fb

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -0
app.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import tensorflow as tf
3
+ from PIL import Image
4
+ import numpy as np
5
+
6
+ # Load your custom regression model
7
+ model_path = "pokemon.keras"
8
+ model = tf.keras.models.load_model(model_path)
9
+
10
+ labels = ['Aerodactyl', 'Arbok', 'Alakazam', 'Abra', 'Arcanine']
11
+
12
+ # Define regression function
13
+ def predict_regression(image):
14
+ # Preprocess image
15
+ image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image
16
+ image = image.resize((28, 28)).convert('L') #resize the image to 28x28 and converts it to gray scale
17
+ image = np.array(image)
18
+ print(image.shape)
19
+ # Predict
20
+ prediction = model.predict(image[None, ...]) # Assuming single regression value
21
+ confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))}
22
+ return confidences
23
+
24
+ # Create Gradio interface
25
+ input_image = gr.Image()
26
+ output_text = gr.Textbox(label="Predicted Value")
27
+ interface = gr.Interface(fn=predict_regression,
28
+ inputs=input_image,
29
+ outputs=gr.Label(),
30
+ examples=["images/Aerodactyl.png", "images/arbok.jpg", "images/Alakazam.png", "images/abra.gif","images/Arcanine.png"],
31
+ description="A simple mlp classification model for image classification using the mnist dataset.")
32
+ interface.launch()