import gradio as gr import tensorflow as tf from PIL import Image import numpy as np # Load your custom regression model model_path = "pokemon.keras" model = tf.keras.models.load_model(model_path) labels = ['Aerodactyl', 'Arbok', 'Alakazam', 'Abra', 'Arcanine'] # Define regression function def predict_regression(image): # Preprocess image image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image image = image.resize((28, 28)).convert('L') #resize the image to 28x28 and converts it to gray scale image = np.array(image) print(image.shape) # Predict prediction = model.predict(image[None, ...]) # Assuming single regression value confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))} return confidences # Create Gradio interface input_image = gr.Image() output_text = gr.Textbox(label="Predicted Value") interface = gr.Interface(fn=predict_regression, inputs=input_image, outputs=gr.Label(), examples=["images/Aerodactyl.png", "images/arbok.jpg", "images/Alakazam.png", "images/abra.gif","images/Arcanine.png"], description="A simple mlp classification model for image classification using the mnist dataset.") interface.launch()