Alex Strick van Linschoten commited on
Commit
64c717a
β€’
1 Parent(s): ef4decc

upload app

Browse files
Files changed (8) hide show
  1. README.md +6 -5
  2. app.py +107 -0
  3. article.md +45 -0
  4. packages.txt +1 -0
  5. requirements.txt +10 -0
  6. test1.jpg +0 -0
  7. test1.pdf +0 -0
  8. test2.pdf +0 -0
README.md CHANGED
@@ -1,13 +1,14 @@
1
  ---
2
  title: Redaction Detector
3
- emoji: πŸ”₯
4
- colorFrom: pink
5
- colorTo: red
6
  sdk: gradio
7
  sdk_version: 2.9.4
8
  app_file: app.py
9
- pinned: false
10
  license: apache-2.0
11
  ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
 
 
1
  ---
2
  title: Redaction Detector
3
+ emoji: πŸ“„
4
+ colorFrom: blue
5
+ colorTo: yellow
6
  sdk: gradio
7
  sdk_version: 2.9.4
8
  app_file: app.py
9
+ pinned: true
10
  license: apache-2.0
11
  ---
12
 
13
+ Check out the configuration reference at
14
+ https://huggingface.co/docs/hub/spaces#reference
app.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import skimage
3
+ from fastai.learner import load_learner
4
+ from fastai.vision.all import *
5
+ from huggingface_hub import hf_hub_download
6
+ import fitz
7
+ import tempfile
8
+ import os
9
+ from fpdf import FPDF
10
+
11
+ learn = load_learner(
12
+ hf_hub_download("strickvl/redaction-classifier-fastai", "model.pkl")
13
+ )
14
+
15
+ labels = learn.dls.vocab
16
+
17
+
18
+ def predict(pdf, confidence, generate_file):
19
+ document = fitz.open(pdf.name)
20
+ results = []
21
+ images = []
22
+ tmp_dir = tempfile.gettempdir()
23
+ for page_num, page in enumerate(document, start=1):
24
+ image_pixmap = page.get_pixmap()
25
+ image = image_pixmap.tobytes()
26
+ _, _, probs = learn.predict(image)
27
+ results.append(
28
+ {labels[i]: float(probs[i]) for i in range(len(labels))}
29
+ )
30
+ if probs[0] > (confidence / 100):
31
+ redaction_count = len(images)
32
+ image_pixmap.save(os.path.join(tmp_dir, f"page-{page_num}.png"))
33
+ images.append(
34
+ [
35
+ f"Redacted page #{redaction_count + 1} on page {page_num}",
36
+ os.path.join(tmp_dir, f"page-{page_num}.png"),
37
+ ]
38
+ )
39
+
40
+ redacted_pages = [
41
+ str(page + 1)
42
+ for page in range(len(results))
43
+ if results[page]["redacted"] > (confidence / 100)
44
+ ]
45
+ report = os.path.join(tmp_dir, "redacted_pages.pdf")
46
+ if generate_file:
47
+ pdf = FPDF()
48
+ pdf.set_auto_page_break(0)
49
+ imagelist = sorted(
50
+ [i for i in os.listdir(tmp_dir) if i.endswith("png")]
51
+ )
52
+ for image in imagelist:
53
+ pdf.add_page()
54
+ pdf.image(os.path.join(tmp_dir, image), w=190, h=280)
55
+ pdf.output(report, "F")
56
+ text_output = f"A total of {len(redacted_pages)} pages were redacted. \n\n The redacted page numbers were: {', '.join(redacted_pages)}."
57
+ if generate_file:
58
+ return text_output, images, report
59
+ else:
60
+ return text_output, images, None
61
+
62
+
63
+ title = "Redaction Detector"
64
+
65
+ description = "A classifier trained on publicly released redacted (and unredacted) FOIA documents, using [fastai](https://github.com/fastai/fastai)."
66
+
67
+ with open("article.md") as f:
68
+ article = f.read()
69
+
70
+ examples = [["test1.pdf", 80, False], ["test2.pdf", 80, False]]
71
+ interpretation = "default"
72
+ enable_queue = True
73
+ theme = "grass"
74
+ allow_flagging = "never"
75
+
76
+ demo = gr.Interface(
77
+ fn=predict,
78
+ inputs=[
79
+ "file",
80
+ gr.inputs.Slider(
81
+ minimum=0,
82
+ maximum=100,
83
+ step=None,
84
+ default=80,
85
+ label="Confidence",
86
+ optional=False,
87
+ ),
88
+ "checkbox",
89
+ ],
90
+ outputs=[
91
+ gr.outputs.Textbox(label="Document Analysis"),
92
+ gr.outputs.Carousel(["text", "image"], label="Redacted pages"),
93
+ gr.outputs.File(label="Download redacted pages"),
94
+ ],
95
+ title=title,
96
+ description=description,
97
+ article=article,
98
+ theme=theme,
99
+ allow_flagging=allow_flagging,
100
+ examples=examples,
101
+ interpretation=interpretation,
102
+ )
103
+
104
+ demo.launch(
105
+ cache_examples=True,
106
+ enable_queue=enable_queue,
107
+ )
article.md ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ I've been working through the first two lessons of
2
+ [the fastai course](https://course.fast.ai/). For lesson one I trained a model
3
+ to recognise my cat, Mr Blupus. For lesson two the emphasis is on getting those
4
+ models out in the world as some kind of demo or application.
5
+ [Gradio](https://gradio.app) and
6
+ [Huggingface Spaces](https://huggingface.co/spaces) makes it super easy to get a
7
+ prototype of your model on the internet.
8
+
9
+ This model has an accuracy of ~96% on the validation dataset.
10
+
11
+ ## The Dataset
12
+
13
+ I downloaded a few thousand publicly-available FOIA documents from a government
14
+ website. I split the PDFs up into individual `.jpg` files and then used
15
+ [Prodigy](https://prodi.gy/) to annotate the data. (This process was described
16
+ in
17
+ [a blogpost written last year](https://mlops.systems/fastai/redactionmodel/computervision/datalabelling/2021/09/06/redaction-classification-chapter-2.html).)
18
+
19
+ ## Training the model
20
+
21
+ I trained the model with fastai's flexible `vision_learner`, fine-tuning
22
+ `resnet18` which was both smaller than `resnet34` (no surprises there) and less
23
+ liable to early overfitting. I trained the model for 10 epochs.
24
+
25
+ ## Further Reading
26
+
27
+ This initial dataset spurred an ongoing interest in the domain and I've since
28
+ been working on the problem of object detection, i.e. identifying exactly which
29
+ parts of the image contain redactions.
30
+
31
+ Some of the key blogs I've written about this project:
32
+
33
+ - How to annotate data for an object detection problem with Prodigy
34
+ ([link](https://mlops.systems/redactionmodel/computervision/datalabelling/2021/11/29/prodigy-object-detection-training.html))
35
+ - How to create synthetic images to supplement a small dataset
36
+ ([link](https://mlops.systems/redactionmodel/computervision/python/tools/2022/02/10/synthetic-image-data.html))
37
+ - How to use error analysis and visual tools like FiftyOne to improve model
38
+ performance
39
+ ([link](https://mlops.systems/redactionmodel/computervision/tools/debugging/jupyter/2022/03/12/fiftyone-computervision.html))
40
+ - Creating more synthetic data focused on the tasks my model finds hard
41
+ ([link](https://mlops.systems/tools/redactionmodel/computervision/2022/04/06/synthetic-data-results.html))
42
+ - Data validation for object detection / computer vision (a three part series β€”
43
+ [part 1](https://mlops.systems/tools/redactionmodel/computervision/datavalidation/2022/04/19/data-validation-great-expectations-part-1.html),
44
+ [part 2](https://mlops.systems/tools/redactionmodel/computervision/datavalidation/2022/04/26/data-validation-great-expectations-part-2.html),
45
+ [part 3](https://mlops.systems/tools/redactionmodel/computervision/datavalidation/2022/04/28/data-validation-great-expectations-part-3.html))
packages.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ python3-opencv
requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ --find-links https://download.openmmlab.com/mmcv/dist/cpu/torch1.10.0/index.html
2
+ mmcv-full==1.3.17
3
+ mmdet==2.17.0
4
+ gradio==2.7.5
5
+ icevision[all]==0.12.0
6
+
7
+ fastai
8
+ scikit-image
9
+ pymupdf
10
+ fpdf
test1.jpg ADDED
test1.pdf ADDED
Binary file (921 kB). View file
 
test2.pdf ADDED
Binary file (740 kB). View file