Spaces:
Runtime error
Runtime error
Alex Strick van Linschoten
commited on
Commit
β’
64c717a
1
Parent(s):
ef4decc
upload app
Browse files- README.md +6 -5
- app.py +107 -0
- article.md +45 -0
- packages.txt +1 -0
- requirements.txt +10 -0
- test1.jpg +0 -0
- test1.pdf +0 -0
- test2.pdf +0 -0
README.md
CHANGED
@@ -1,13 +1,14 @@
|
|
1 |
---
|
2 |
title: Redaction Detector
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 2.9.4
|
8 |
app_file: app.py
|
9 |
-
pinned:
|
10 |
license: apache-2.0
|
11 |
---
|
12 |
|
13 |
-
Check out the configuration reference at
|
|
|
|
1 |
---
|
2 |
title: Redaction Detector
|
3 |
+
emoji: π
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
sdk_version: 2.9.4
|
8 |
app_file: app.py
|
9 |
+
pinned: true
|
10 |
license: apache-2.0
|
11 |
---
|
12 |
|
13 |
+
Check out the configuration reference at
|
14 |
+
https://huggingface.co/docs/hub/spaces#reference
|
app.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import skimage
|
3 |
+
from fastai.learner import load_learner
|
4 |
+
from fastai.vision.all import *
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
import fitz
|
7 |
+
import tempfile
|
8 |
+
import os
|
9 |
+
from fpdf import FPDF
|
10 |
+
|
11 |
+
learn = load_learner(
|
12 |
+
hf_hub_download("strickvl/redaction-classifier-fastai", "model.pkl")
|
13 |
+
)
|
14 |
+
|
15 |
+
labels = learn.dls.vocab
|
16 |
+
|
17 |
+
|
18 |
+
def predict(pdf, confidence, generate_file):
|
19 |
+
document = fitz.open(pdf.name)
|
20 |
+
results = []
|
21 |
+
images = []
|
22 |
+
tmp_dir = tempfile.gettempdir()
|
23 |
+
for page_num, page in enumerate(document, start=1):
|
24 |
+
image_pixmap = page.get_pixmap()
|
25 |
+
image = image_pixmap.tobytes()
|
26 |
+
_, _, probs = learn.predict(image)
|
27 |
+
results.append(
|
28 |
+
{labels[i]: float(probs[i]) for i in range(len(labels))}
|
29 |
+
)
|
30 |
+
if probs[0] > (confidence / 100):
|
31 |
+
redaction_count = len(images)
|
32 |
+
image_pixmap.save(os.path.join(tmp_dir, f"page-{page_num}.png"))
|
33 |
+
images.append(
|
34 |
+
[
|
35 |
+
f"Redacted page #{redaction_count + 1} on page {page_num}",
|
36 |
+
os.path.join(tmp_dir, f"page-{page_num}.png"),
|
37 |
+
]
|
38 |
+
)
|
39 |
+
|
40 |
+
redacted_pages = [
|
41 |
+
str(page + 1)
|
42 |
+
for page in range(len(results))
|
43 |
+
if results[page]["redacted"] > (confidence / 100)
|
44 |
+
]
|
45 |
+
report = os.path.join(tmp_dir, "redacted_pages.pdf")
|
46 |
+
if generate_file:
|
47 |
+
pdf = FPDF()
|
48 |
+
pdf.set_auto_page_break(0)
|
49 |
+
imagelist = sorted(
|
50 |
+
[i for i in os.listdir(tmp_dir) if i.endswith("png")]
|
51 |
+
)
|
52 |
+
for image in imagelist:
|
53 |
+
pdf.add_page()
|
54 |
+
pdf.image(os.path.join(tmp_dir, image), w=190, h=280)
|
55 |
+
pdf.output(report, "F")
|
56 |
+
text_output = f"A total of {len(redacted_pages)} pages were redacted. \n\n The redacted page numbers were: {', '.join(redacted_pages)}."
|
57 |
+
if generate_file:
|
58 |
+
return text_output, images, report
|
59 |
+
else:
|
60 |
+
return text_output, images, None
|
61 |
+
|
62 |
+
|
63 |
+
title = "Redaction Detector"
|
64 |
+
|
65 |
+
description = "A classifier trained on publicly released redacted (and unredacted) FOIA documents, using [fastai](https://github.com/fastai/fastai)."
|
66 |
+
|
67 |
+
with open("article.md") as f:
|
68 |
+
article = f.read()
|
69 |
+
|
70 |
+
examples = [["test1.pdf", 80, False], ["test2.pdf", 80, False]]
|
71 |
+
interpretation = "default"
|
72 |
+
enable_queue = True
|
73 |
+
theme = "grass"
|
74 |
+
allow_flagging = "never"
|
75 |
+
|
76 |
+
demo = gr.Interface(
|
77 |
+
fn=predict,
|
78 |
+
inputs=[
|
79 |
+
"file",
|
80 |
+
gr.inputs.Slider(
|
81 |
+
minimum=0,
|
82 |
+
maximum=100,
|
83 |
+
step=None,
|
84 |
+
default=80,
|
85 |
+
label="Confidence",
|
86 |
+
optional=False,
|
87 |
+
),
|
88 |
+
"checkbox",
|
89 |
+
],
|
90 |
+
outputs=[
|
91 |
+
gr.outputs.Textbox(label="Document Analysis"),
|
92 |
+
gr.outputs.Carousel(["text", "image"], label="Redacted pages"),
|
93 |
+
gr.outputs.File(label="Download redacted pages"),
|
94 |
+
],
|
95 |
+
title=title,
|
96 |
+
description=description,
|
97 |
+
article=article,
|
98 |
+
theme=theme,
|
99 |
+
allow_flagging=allow_flagging,
|
100 |
+
examples=examples,
|
101 |
+
interpretation=interpretation,
|
102 |
+
)
|
103 |
+
|
104 |
+
demo.launch(
|
105 |
+
cache_examples=True,
|
106 |
+
enable_queue=enable_queue,
|
107 |
+
)
|
article.md
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
I've been working through the first two lessons of
|
2 |
+
[the fastai course](https://course.fast.ai/). For lesson one I trained a model
|
3 |
+
to recognise my cat, Mr Blupus. For lesson two the emphasis is on getting those
|
4 |
+
models out in the world as some kind of demo or application.
|
5 |
+
[Gradio](https://gradio.app) and
|
6 |
+
[Huggingface Spaces](https://huggingface.co/spaces) makes it super easy to get a
|
7 |
+
prototype of your model on the internet.
|
8 |
+
|
9 |
+
This model has an accuracy of ~96% on the validation dataset.
|
10 |
+
|
11 |
+
## The Dataset
|
12 |
+
|
13 |
+
I downloaded a few thousand publicly-available FOIA documents from a government
|
14 |
+
website. I split the PDFs up into individual `.jpg` files and then used
|
15 |
+
[Prodigy](https://prodi.gy/) to annotate the data. (This process was described
|
16 |
+
in
|
17 |
+
[a blogpost written last year](https://mlops.systems/fastai/redactionmodel/computervision/datalabelling/2021/09/06/redaction-classification-chapter-2.html).)
|
18 |
+
|
19 |
+
## Training the model
|
20 |
+
|
21 |
+
I trained the model with fastai's flexible `vision_learner`, fine-tuning
|
22 |
+
`resnet18` which was both smaller than `resnet34` (no surprises there) and less
|
23 |
+
liable to early overfitting. I trained the model for 10 epochs.
|
24 |
+
|
25 |
+
## Further Reading
|
26 |
+
|
27 |
+
This initial dataset spurred an ongoing interest in the domain and I've since
|
28 |
+
been working on the problem of object detection, i.e. identifying exactly which
|
29 |
+
parts of the image contain redactions.
|
30 |
+
|
31 |
+
Some of the key blogs I've written about this project:
|
32 |
+
|
33 |
+
- How to annotate data for an object detection problem with Prodigy
|
34 |
+
([link](https://mlops.systems/redactionmodel/computervision/datalabelling/2021/11/29/prodigy-object-detection-training.html))
|
35 |
+
- How to create synthetic images to supplement a small dataset
|
36 |
+
([link](https://mlops.systems/redactionmodel/computervision/python/tools/2022/02/10/synthetic-image-data.html))
|
37 |
+
- How to use error analysis and visual tools like FiftyOne to improve model
|
38 |
+
performance
|
39 |
+
([link](https://mlops.systems/redactionmodel/computervision/tools/debugging/jupyter/2022/03/12/fiftyone-computervision.html))
|
40 |
+
- Creating more synthetic data focused on the tasks my model finds hard
|
41 |
+
([link](https://mlops.systems/tools/redactionmodel/computervision/2022/04/06/synthetic-data-results.html))
|
42 |
+
- Data validation for object detection / computer vision (a three part series β
|
43 |
+
[part 1](https://mlops.systems/tools/redactionmodel/computervision/datavalidation/2022/04/19/data-validation-great-expectations-part-1.html),
|
44 |
+
[part 2](https://mlops.systems/tools/redactionmodel/computervision/datavalidation/2022/04/26/data-validation-great-expectations-part-2.html),
|
45 |
+
[part 3](https://mlops.systems/tools/redactionmodel/computervision/datavalidation/2022/04/28/data-validation-great-expectations-part-3.html))
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
python3-opencv
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--find-links https://download.openmmlab.com/mmcv/dist/cpu/torch1.10.0/index.html
|
2 |
+
mmcv-full==1.3.17
|
3 |
+
mmdet==2.17.0
|
4 |
+
gradio==2.7.5
|
5 |
+
icevision[all]==0.12.0
|
6 |
+
|
7 |
+
fastai
|
8 |
+
scikit-image
|
9 |
+
pymupdf
|
10 |
+
fpdf
|
test1.jpg
ADDED
test1.pdf
ADDED
Binary file (921 kB). View file
|
|
test2.pdf
ADDED
Binary file (740 kB). View file
|
|