studyinglover's picture
init
b9f52a3
raw
history blame
3.55 kB
import gradio as gr
import torch
import time
from transformers import AutoTokenizer, AutoModelForCausalLM
# 加载 tokenizer 和模型
tokenizer_path = "studyinglover/IntelliKernel-0.03b-sft"
model_path = "studyinglover/IntelliKernel-0.03b-sft"
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# 定义一个生成回复的函数
def chat_with_model(history, user_input, top_k, temperature):
# 将用户输入追加到对话历史
history.append({"role": "user", "content": user_input})
# 生成新提示
new_prompt = tokenizer.apply_chat_template(
history, tokenize=False, add_generation_prompt=True
)[-(model.config.max_seq_len - 1) :]
# 编码输入并发送到设备
x = tokenizer(new_prompt, return_tensors="pt").input_ids.to(device)
# 使用模型生成回复并计时
output_text = ""
start_time = time.time()
with torch.inference_mode():
_output = model.generate(
x,
tokenizer.eos_token_id,
max_new_tokens=512,
top_k=top_k,
temperature=temperature,
stream=True,
)
for i in _output:
output = tokenizer.decode(i[0].tolist())
output_text += output
end_time = time.time()
elapsed_time = end_time - start_time
num_tokens = len(tokenizer.encode(output_text))
token_speed = num_tokens / elapsed_time if elapsed_time > 0 else 0
# 更新最新对话的 token 数量和生成速度
token_info = (
f"Token 数量: {num_tokens}\nToken 输出速度: {token_speed:.2f} tokens/sec"
)
# 将模型回复加入对话历史
history.append({"role": "assistant", "content": output_text.strip()})
# 返回更新后的对话历史和 token 信息
return history, "", token_info
# 使用 Gradio 构建对话机器人界面
with gr.Blocks() as iface:
with gr.Row():
with gr.Column(scale=1):
# 左侧参数控制区域
top_k_slider = gr.Slider(0, 100, value=50, step=1, label="Top-k")
temp_slider = gr.Slider(0.1, 1.5, value=1.0, step=0.1, label="Temperature")
token_info_box = gr.Markdown(
"Token 数量: \nToken 输出速度: "
) # 显示 token 信息的框
with gr.Column(scale=3):
# 右侧对话区域
gr.Markdown(
"# Chat with AI\n这是一个简单的聊天模型界面,输入内容后模型将生成相应的回复。"
)
chatbot = gr.Chatbot(type="messages") # 使用 "messages" 类型记录对话
msg = gr.Textbox(label="Your Message") # 用户输入框
with gr.Row():
send_btn = gr.Button("Send Message") # 发送消息按钮
clear = gr.Button("Clear Chat") # 清除聊天记录按钮
# 设置交互逻辑
send_btn.click(
chat_with_model,
[chatbot, msg, top_k_slider, temp_slider],
[chatbot, msg, token_info_box],
) # 发送消息
msg.submit(
chat_with_model,
[chatbot, msg, top_k_slider, temp_slider],
[chatbot, msg, token_info_box],
) # 按回车发送
clear.click(lambda: None, None, chatbot, queue=False) # 清除聊天记录
iface.launch()