|
import gradio as gr |
|
import torch |
|
import time |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
|
|
tokenizer_path = "studyinglover/IntelliKernel-0.03b-sft" |
|
model_path = "studyinglover/IntelliKernel-0.03b-sft" |
|
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path) |
|
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True) |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model.to(device) |
|
|
|
|
|
|
|
def chat_with_model(history, user_input, top_k, temperature): |
|
|
|
history.append({"role": "user", "content": user_input}) |
|
|
|
|
|
new_prompt = tokenizer.apply_chat_template( |
|
history, tokenize=False, add_generation_prompt=True |
|
)[-(model.config.max_seq_len - 1) :] |
|
|
|
|
|
x = tokenizer(new_prompt, return_tensors="pt").input_ids.to(device) |
|
|
|
|
|
output_text = "" |
|
start_time = time.time() |
|
with torch.inference_mode(): |
|
_output = model.generate( |
|
x, |
|
tokenizer.eos_token_id, |
|
max_new_tokens=512, |
|
top_k=top_k, |
|
temperature=temperature, |
|
stream=True, |
|
) |
|
|
|
for i in _output: |
|
output = tokenizer.decode(i[0].tolist()) |
|
output_text += output |
|
|
|
end_time = time.time() |
|
elapsed_time = end_time - start_time |
|
num_tokens = len(tokenizer.encode(output_text)) |
|
token_speed = num_tokens / elapsed_time if elapsed_time > 0 else 0 |
|
|
|
|
|
token_info = ( |
|
f"Token 数量: {num_tokens}\nToken 输出速度: {token_speed:.2f} tokens/sec" |
|
) |
|
|
|
|
|
history.append({"role": "assistant", "content": output_text.strip()}) |
|
|
|
|
|
return history, "", token_info |
|
|
|
|
|
|
|
with gr.Blocks() as iface: |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
|
|
top_k_slider = gr.Slider(0, 100, value=50, step=1, label="Top-k") |
|
temp_slider = gr.Slider(0.1, 1.5, value=1.0, step=0.1, label="Temperature") |
|
token_info_box = gr.Markdown( |
|
"Token 数量: \nToken 输出速度: " |
|
) |
|
with gr.Column(scale=3): |
|
|
|
gr.Markdown( |
|
"# Chat with AI\n这是一个简单的聊天模型界面,输入内容后模型将生成相应的回复。" |
|
) |
|
chatbot = gr.Chatbot(type="messages") |
|
msg = gr.Textbox(label="Your Message") |
|
with gr.Row(): |
|
send_btn = gr.Button("Send Message") |
|
clear = gr.Button("Clear Chat") |
|
|
|
|
|
send_btn.click( |
|
chat_with_model, |
|
[chatbot, msg, top_k_slider, temp_slider], |
|
[chatbot, msg, token_info_box], |
|
) |
|
msg.submit( |
|
chat_with_model, |
|
[chatbot, msg, top_k_slider, temp_slider], |
|
[chatbot, msg, token_info_box], |
|
) |
|
clear.click(lambda: None, None, chatbot, queue=False) |
|
|
|
iface.launch() |
|
|