import numpy as np import PIL from PIL import Image, ImageDraw import gradio as gr import torch import easyocr import os from pathlib import Path import cv2 import pandas as pd #torch.hub.download_url_to_file('https://github.com/AaronCWacker/Yggdrasil/blob/main/images/BeautyIsTruthTruthisBeauty.JPG', 'BeautyIsTruthTruthisBeauty.JPG') #torch.hub.download_url_to_file('https://github.com/AaronCWacker/Yggdrasil/blob/main/images/PleaseRepeatLouder.jpg', 'PleaseRepeatLouder.jpg') #torch.hub.download_url_to_file('https://github.com/AaronCWacker/Yggdrasil/blob/main/images/ProhibitedInWhiteHouse.JPG', 'ProhibitedInWhiteHouse.JPG') torch.hub.download_url_to_file('https://raw.githubusercontent.com/AaronCWacker/Yggdrasil/master/images/20-Books.jpg','20-Books.jpg') torch.hub.download_url_to_file('https://github.com/JaidedAI/EasyOCR/raw/master/examples/english.png', 'COVID.png') torch.hub.download_url_to_file('https://github.com/JaidedAI/EasyOCR/raw/master/examples/chinese.jpg', 'chinese.jpg') torch.hub.download_url_to_file('https://github.com/JaidedAI/EasyOCR/raw/master/examples/japanese.jpg', 'japanese.jpg') torch.hub.download_url_to_file('https://i.imgur.com/mwQFd7G.jpeg', 'Hindi.jpeg') def draw_boxes(image, bounds, color='yellow', width=2): draw = ImageDraw.Draw(image) for bound in bounds: p0, p1, p2, p3 = bound[0] draw.line([*p0, *p1, *p2, *p3, *p0], fill=color, width=width) return image def box_size(box): points = box[0] if len(points) == 4: x1, y1 = points[0] x2, y2 = points[2] return abs(x1 - x2) * abs(y1 - y2) else: return 0 def box_position(box): return (box[0][0][0] + box[0][2][0]) / 2, (box[0][0][1] + box[0][2][1]) / 2 def inference(video, lang, time_step): output = 'results.mp4' reader = easyocr.Reader(lang) bounds = [] vidcap = cv2.VideoCapture(video) success, frame = vidcap.read() count = 0 frame_rate = vidcap.get(cv2.CAP_PROP_FPS) output_frames = [] temporal_profiles = [] max_boxes = 10 # Get the positions of the largest boxes in the first frame while success and not bounds: if count == 0: bounds = reader.readtext(frame) im = PIL.Image.fromarray(frame) im_with_boxes = draw_boxes(im, bounds) largest_boxes = sorted(bounds, key=lambda x: box_size(x), reverse=True)[:max_boxes] positions = [box_position(b) for b in largest_boxes] temporal_profiles = [[] for _ in range(len(largest_boxes))] success, frame = vidcap.read() count += 1 # Match bboxes to position and store the text read by OCR while success: if count % (int(frame_rate * time_step)) == 0: bounds = reader.readtext(frame) for box in bounds: bbox_pos = box_position(box) for i, position in enumerate(positions): distance = np.linalg.norm(np.array(bbox_pos) - np.array(position)) if distance < 50: temporal_profiles[i].append((count / frame_rate, box[1])) break im = PIL.Image.fromarray(frame) im_with_boxes = draw_boxes(im, bounds) output_frames.append(np.array(im_with_boxes)) success, frame = vidcap.read() count += 1 # Default resolutions of the frame are obtained. The default resolutions are system dependent. # We convert the resolutions from float to integer. width = int(vidcap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = vidcap.get(cv2.CAP_PROP_FPS) frames_total = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) # Define the codec and create VideoWriter object. temp = f"{Path(output).stem}_temp{Path(output).suffix}" output_video = cv2.VideoWriter( temp, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height) ) # output_video = cv2.VideoWriter(output, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height)) for frame in output_frames: output_video.write(frame) output_video.release() vidcap.release() # Compressing the video for smaller size and web compatibility. os.system( f"ffmpeg -y -i {temp} -c:v libx264 -b:v 5000k -minrate 1000k -maxrate 8000k -pass 1 -c:a aac -f mp4 /dev/null && ffmpeg -y -i {temp} -c:v libx264 -b:v 5000k -minrate 1000k -maxrate 8000k -pass 2 -c:a aac -movflags faststart {output}" ) os.system(f"rm -rf {temp} ffmpeg2pass-0.log ffmpeg2pass-0.log.mbtree") # Format temporal profiles as a DataFrame df = pd.DataFrame(columns=["Box", "Time (s)", "Text"]) for i, profile in enumerate(temporal_profiles): for t, text in profile: df = df.append({"Box": f"Box {i+1}", "Time (s)": t, "Text": text}, ignore_index=True) return output, df title = '🖼️Video to Multilingual OCR👁️Gradio' description = 'Multilingual OCR which works conveniently on all devices in multiple languages.' article = "

" examples = [ #['PleaseRepeatLouder.jpg',['ja']],['ProhibitedInWhiteHouse.JPG',['en']],['BeautyIsTruthTruthisBeauty.JPG',['en']], ['20-Books.jpg',['en']],['COVID.png',['en']],['chinese.jpg',['ch_sim', 'en']],['japanese.jpg',['ja', 'en']],['Hindi.jpeg',['hi', 'en']] ] css = ".output_image, .input_image {height: 40rem !important; width: 100% !important;}" choices = [ "ch_sim", "ch_tra", "de", "en", "es", "ja", "hi", "ru" ] gr.Interface( inference, [ # gr.inputs.Image(type='file', label='Input Image'), gr.inputs.Video(label='Input Video'), gr.inputs.CheckboxGroup(choices, type="value", default=['en'], label='Language'), gr.inputs.Number(label='Time Step (in seconds)', default=1.0) ], [ gr.outputs.Video(label='Output Video'), gr.outputs.Dataframe(headers=['Box', 'Time (s)', 'Text']) ], title=title, description=description, article=article, # examples=examples, css=css, enable_queue=True ).launch(debug=True)