predict_salary / model.py
suarkadipa's picture
updated
0184946
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
import pickle
# Importing the dataset
# dataset = pd.read_csv('dataset/Sales_Salary_Data.csv')
dataset = pd.read_csv('dataset/Sales_Salary_Data_IDR.csv')
# seprate feature & target
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 1].values
# Splitting the dataset into the Training set and Test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
# Fitting Simple Linear Regression to the Training set
regressor = LinearRegression()
regressor.fit(X_train, y_train)
# Predicting the Test set results
y_pred = regressor.predict(X_test)
# Saving serialized model to disk
pickle.dump(regressor, open('model.pkl','wb'))
#joblib.dump(regressor, 'model.pkl')
# Loading model to compare the results
model = pickle.load(open('model.pkl','rb'))
#model = joblib.load('model.pkl')
print("Regressor model output", regressor.predict([[1.8]]))
print("Saved model output", model.predict([[1.8]]))