import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression import pickle # Importing the dataset # dataset = pd.read_csv('dataset/Sales_Salary_Data.csv') dataset = pd.read_csv('dataset/Sales_Salary_Data_IDR.csv') # seprate feature & target X = dataset.iloc[:, :-1].values y = dataset.iloc[:, 1].values # Splitting the dataset into the Training set and Test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0) # Fitting Simple Linear Regression to the Training set regressor = LinearRegression() regressor.fit(X_train, y_train) # Predicting the Test set results y_pred = regressor.predict(X_test) # Saving serialized model to disk pickle.dump(regressor, open('model.pkl','wb')) #joblib.dump(regressor, 'model.pkl') # Loading model to compare the results model = pickle.load(open('model.pkl','rb')) #model = joblib.load('model.pkl') print("Regressor model output", regressor.predict([[1.8]])) print("Saved model output", model.predict([[1.8]]))