import gradio as gr import torch import torchvision.transforms as transforms from PIL import Image import os class CatDogClassifier: def __init__(self, model_path="model.pt"): self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Load the traced model self.model = torch.jit.load(model_path) self.model = self.model.to(self.device) self.model.eval() # Define the same transforms used during training/testing self.transform = transforms.Compose([ transforms.Resize((160, 160)), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) ]) # Class labels self.labels = ['Dog', 'Cat'] @torch.no_grad() def predict(self, image): if image is None: return None # Convert to PIL Image if needed if not isinstance(image, Image.Image): image = Image.fromarray(image).convert('RGB') # Preprocess image img_tensor = self.transform(image).unsqueeze(0).to(self.device) # Get prediction output = self.model(img_tensor) probabilities = torch.nn.functional.softmax(output[0], dim=0) # Create prediction dictionary return { self.labels[idx]: float(prob) for idx, prob in enumerate(probabilities) } # Create classifier instance classifier = CatDogClassifier() # Create Gradio interface demo = gr.Interface( fn=classifier.predict, inputs=gr.Image(), outputs=gr.Label(num_top_classes=2), title="Cat vs Dog Classifier", description="Upload an image to classify whether it's a cat or a dog", examples=[ ["examples/cat.jpg"], ["examples/dog.jpg"] ] ) if __name__ == "__main__": demo.launch()