|
import streamlit as st |
|
from langchain.llms import OpenAI |
|
from langchain.text_splitter import CharacterTextSplitter |
|
from langchain.embeddings import OpenAIEmbeddings |
|
from langchain.vectorstores import Chroma |
|
from langchain.chains import RetrievalQA |
|
|
|
def generate_response(uploaded_file, openai_api_key, query_text): |
|
|
|
if uploaded_file is not None: |
|
documents = [uploaded_file.read().decode()] |
|
|
|
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) |
|
texts = text_splitter.create_documents(documents) |
|
|
|
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key) |
|
|
|
db = Chroma.from_documents(texts, embeddings) |
|
|
|
retriever = db.as_retriever() |
|
|
|
qa = RetrievalQA.from_chain_type(llm=OpenAI(openai_api_key=openai_api_key), chain_type='stuff', retriever=retriever) |
|
return qa.run(query_text) |
|
|
|
|
|
st.set_page_config(page_title='π¦π Ask the Doc App') |
|
st.title('π¦π Ask the Doc App') |
|
|
|
|
|
uploaded_file = st.file_uploader('Upload an article', type='txt') |
|
|
|
query_text = st.text_input('Enter your question:', placeholder = 'Please provide a short summary.', disabled=not uploaded_file) |
|
|
|
|
|
result = [] |
|
with st.form('myform', clear_on_submit=True): |
|
openai_api_key = st.text_input('OpenAI API Key', type='password', disabled=not (uploaded_file and query_text)) |
|
submitted = st.form_submit_button('Submit', disabled=not(uploaded_file and query_text)) |
|
if submitted and openai_api_key.startswith('sk-'): |
|
with st.spinner('Calculating...'): |
|
response = generate_response(uploaded_file, openai_api_key, query_text) |
|
result.append(response) |
|
del openai_api_key |
|
|
|
if len(result): |
|
st.info(response) |