Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
from sklearn import datasets
|
5 |
+
from sklearn.linear_model import SGDClassifier
|
6 |
+
from sklearn.inspection import DecisionBoundaryDisplay
|
7 |
+
|
8 |
+
def predict_class(x, y):
|
9 |
+
iris = datasets.load_iris()
|
10 |
+
X = iris.data[:, :2]
|
11 |
+
y = iris.target
|
12 |
+
colors = "bry"
|
13 |
+
idx = np.arange(X.shape[0])
|
14 |
+
np.random.seed(13)
|
15 |
+
np.random.shuffle(idx)
|
16 |
+
X = X[idx]
|
17 |
+
y = y[idx]
|
18 |
+
mean = X.mean(axis=0)
|
19 |
+
std = X.std(axis=0)
|
20 |
+
X = (X - mean) / std
|
21 |
+
clf = SGDClassifier(alpha=0.001, max_iter=100).fit(X, y)
|
22 |
+
predicted_class = clf.predict(np.array([[x, y]]))[0]
|
23 |
+
return iris.target_names[predicted_class]
|
24 |
+
|
25 |
+
def decision_boundary(x_min, x_max, y_min, y_max):
|
26 |
+
iris = datasets.load_iris()
|
27 |
+
X = iris.data[:, :2]
|
28 |
+
y = iris.target
|
29 |
+
colors = "bry"
|
30 |
+
idx = np.arange(X.shape[0])
|
31 |
+
np.random.seed(13)
|
32 |
+
np.random.shuffle(idx)
|
33 |
+
X = X[idx]
|
34 |
+
y = y[idx]
|
35 |
+
mean = X.mean(axis=0)
|
36 |
+
std = X.std(axis=0)
|
37 |
+
X = (X - mean) / std
|
38 |
+
clf = SGDClassifier(alpha=0.001, max_iter=100).fit(X, y)
|
39 |
+
ax = plt.gca()
|
40 |
+
DecisionBoundaryDisplay.from_estimator(
|
41 |
+
clf,
|
42 |
+
X,
|
43 |
+
cmap=plt.cm.Paired,
|
44 |
+
ax=ax,
|
45 |
+
response_method="predict",
|
46 |
+
xlabel=iris.feature_names[0],
|
47 |
+
ylabel=iris.feature_names[1],
|
48 |
+
)
|
49 |
+
plt.axis([x_min, x_max, y_min, y_max])
|
50 |
+
plt.xticks(fontsize=8)
|
51 |
+
plt.yticks(fontsize=8)
|
52 |
+
plt.gcf().set_size_inches(5, 4)
|
53 |
+
return plt.gcf()
|
54 |
+
|
55 |
+
iris = datasets.load_iris()
|
56 |
+
|
57 |
+
inputs = [
|
58 |
+
gr.inputs.Slider(0, 8, label=iris.feature_names[0], default=5.8, decimal=1),
|
59 |
+
gr.inputs.Slider(0, 8, label=iris.feature_names[1], default=3.5, decimal=1),
|
60 |
+
]
|
61 |
+
|
62 |
+
output = gr.outputs.Label(num_top_classes=1)
|
63 |
+
|
64 |
+
title = "Iris Dataset - Decision Boundary"
|
65 |
+
description = "Predict the class of the given data point and show the decision boundary of the SGD classifier."
|
66 |
+
article = "<p><a href='https://scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_iris.html'>More about the dataset and the example</a></p>"
|
67 |
+
examples = [
|
68 |
+
[
|
69 |
+
5.8,
|
70 |
+
3.5,
|
71 |
+
],
|
72 |
+
[
|
73 |
+
7.2,
|
74 |
+
3.2,
|
75 |
+
],
|
76 |
+
[
|
77 |
+
5.1,
|
78 |
+
2.5,
|
79 |
+
],
|
80 |
+
[
|
81 |
+
4.9,
|
82 |
+
3.1,
|
83 |
+
],
|
84 |
+
]
|
85 |
+
|
86 |
+
gr.Interface(
|
87 |
+
predict_class,
|
88 |
+
inputs,
|
89 |
+
output,
|
90 |
+
title=title,
|
91 |
+
description=description,
|
92 |
+
examples=examples,
|
93 |
+
theme=theme,
|
94 |
+
article=article,
|
95 |
+
layout="vertical",
|
96 |
+
allow_flagging=False,
|
97 |
+
live=True,
|
98 |
+
outputs=[None, decision_boundary],
|
99 |
+
).launch()
|