sumonta056's picture
feat: working with negatiive emotion
88ba180
raw
history blame
2.56 kB
import torch
def load_words_from_file(file_path):
"""
Load words from a text file and return them as a list.
Each word should be on a separate line in the text file.
"""
with open(file_path, 'r', encoding='utf-8') as file:
words = file.read().splitlines()
return words
def preprocess_with_negation_v2(text):
from emotion_utils import load_words_from_file
negation_words = load_words_from_file('./model/stopwords/negation_words.txt')
emotion_words = load_words_from_file('./model/stopwords/emotion_words.txt')
# Tokenize the sentence into words
words = text.split()
modified_words = words[:] # Create a copy to modify
# Iterate through all words to detect negation-emotion pairs
for i, word in enumerate(words):
if word in negation_words:
# Check the previous 3 words for an emotion word
for j in range(1, 4):
if i - j >= 0 and words[i - j] in emotion_words:
# Mark the detected emotion with a negation label
modified_words[i - j] = f"{words[i - j]} (Negative context)"
break
# Reconstruct the text
return " ".join(modified_words)
def predict(text, model, tokenizer):
from emotion_utils import preprocess_with_negation_v2
"""
Predict the sentiment for a given text with advanced negation handling.
"""
# Ensure the model is on the correct device
device = "cuda" if torch.cuda.is_available() else "cpu"
model = model.to(device)
# Preprocess the text for advanced negation handling
processed_text = preprocess_with_negation_v2(text)
# print(processed_text)
# Tokenize the text
inputs = tokenizer(
processed_text,
padding=True,
truncation=True,
max_length=512,
return_tensors="pt"
).to(device)
# Perform inference
with torch.no_grad():
outputs = model(**inputs)
# Compute probabilities
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
# Get the class with the highest probability
pred_label_idx = probs.argmax(dim=-1).item()
# Map the index to the label
pred_label = model.config.id2label[pred_label_idx]
# Adjust prediction for negation context
negation_map = {
"Sadness": "Optimistic",
"Optimistic": "Sadness",
"Anger": "Optimistic",
}
if "(Negative context)" in processed_text:
pred_label = negation_map.get(pred_label, pred_label)
return probs, pred_label_idx, pred_label