Spaces:
Runtime error
Runtime error
from datasets import load_dataset | |
from transformers import AutoTokenizer | |
from transformers import DataCollatorForSeq2Seq | |
from transformers import AutoModelForSeq2SeqLM, Seq2SeqTrainingArguments, Seq2SeqTrainer | |
from transformers import pipeline | |
checkpoint = "Falconsai/text_summarization" | |
output_dir = "falcon-summ" | |
tokenizer = AutoTokenizer.from_pretrained(checkpoint) | |
import numpy as np | |
import evaluate | |
rouge = evaluate.load("rouge") | |
def compute_metrics(eval_pred): | |
predictions, labels = eval_pred | |
decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True) | |
labels = np.where(labels != -100, labels, tokenizer.pad_token_id) | |
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) | |
result = rouge.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True) | |
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in predictions] | |
result["gen_len"] = np.mean(prediction_lens) | |
return {k: round(v, 4) for k, v in result.items()} | |
def preprocess_function(examples, max_length=1024, max_target_length=128): | |
prefix = "summarize: " | |
inputs = [prefix + doc for doc in examples["text"]] | |
model_inputs = tokenizer(inputs, max_length=1024, truncation=True) | |
labels = tokenizer(text_target=examples["summary"], max_length=128, truncation=True) | |
model_inputs["labels"] = labels["input_ids"] | |
return model_inputs | |
def prep_data(): | |
billsum = load_dataset("billsum", split="ca_test") | |
billsum = billsum.train_test_split(test_size=0.2) | |
return billsum | |
def prep_model(): | |
billsum = prep_data() | |
tokenized_billsum = billsum.map(preprocess_function, batched=True) | |
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint) | |
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint) | |
training_args = Seq2SeqTrainingArguments( | |
output_dir=output_dir, | |
evaluation_strategy="epoch", | |
learning_rate=2e-5, | |
per_device_train_batch_size=16, | |
per_device_eval_batch_size=16, | |
weight_decay=0.01, | |
save_total_limit=3, | |
num_train_epochs=30, | |
predict_with_generate=True, | |
fp16=True, | |
push_to_hub=True, | |
) | |
trainer = Seq2SeqTrainer( | |
model=model, | |
args=training_args, | |
train_dataset=tokenized_billsum["train"], | |
eval_dataset=tokenized_billsum["test"], | |
tokenizer=tokenizer, | |
data_collator=data_collator, | |
compute_metrics=compute_metrics, | |
) | |
return trainer | |
def train_model(trainer): | |
trainer.train() | |
trainer.save_model(output_dir) | |
trainer.push_to_hub() | |
def prep_pipeline(): | |
summarizer = pipeline("summarization", model=f"suneeln-duke/{output_dir}") | |
return summarizer | |
def gen_summary(summarizer, text): | |
summary = summarizer(text, max_length=130, min_length=30, do_sample=False)[0]["summary_text"] | |
return summary |