File size: 10,549 Bytes
d08dd00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
# coding=utf-8
# Copyright 2018 The Google AI Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python2, python3
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import json
import random
import re

from albert import modeling
import numpy as np
import six
from six.moves import range
import tensorflow.compat.v1 as tf


class AlbertModelTest(tf.test.TestCase):

  class AlbertModelTester(object):

    def __init__(self,
                 parent,
                 batch_size=13,
                 seq_length=7,
                 is_training=True,
                 use_input_mask=True,
                 use_token_type_ids=True,
                 vocab_size=99,
                 embedding_size=32,
                 hidden_size=32,
                 num_hidden_layers=5,
                 num_attention_heads=4,
                 intermediate_size=37,
                 hidden_act="gelu",
                 hidden_dropout_prob=0.1,
                 attention_probs_dropout_prob=0.1,
                 max_position_embeddings=512,
                 type_vocab_size=16,
                 initializer_range=0.02,
                 scope=None):
      self.parent = parent
      self.batch_size = batch_size
      self.seq_length = seq_length
      self.is_training = is_training
      self.use_input_mask = use_input_mask
      self.use_token_type_ids = use_token_type_ids
      self.vocab_size = vocab_size
      self.embedding_size = embedding_size
      self.hidden_size = hidden_size
      self.num_hidden_layers = num_hidden_layers
      self.num_attention_heads = num_attention_heads
      self.intermediate_size = intermediate_size
      self.hidden_act = hidden_act
      self.hidden_dropout_prob = hidden_dropout_prob
      self.attention_probs_dropout_prob = attention_probs_dropout_prob
      self.max_position_embeddings = max_position_embeddings
      self.type_vocab_size = type_vocab_size
      self.initializer_range = initializer_range
      self.scope = scope

    def create_model(self):
      input_ids = AlbertModelTest.ids_tensor([self.batch_size, self.seq_length],
                                             self.vocab_size)

      input_mask = None
      if self.use_input_mask:
        input_mask = AlbertModelTest.ids_tensor(
            [self.batch_size, self.seq_length], vocab_size=2)

      token_type_ids = None
      if self.use_token_type_ids:
        token_type_ids = AlbertModelTest.ids_tensor(
            [self.batch_size, self.seq_length], self.type_vocab_size)

      config = modeling.AlbertConfig(
          vocab_size=self.vocab_size,
          embedding_size=self.embedding_size,
          hidden_size=self.hidden_size,
          num_hidden_layers=self.num_hidden_layers,
          num_attention_heads=self.num_attention_heads,
          intermediate_size=self.intermediate_size,
          hidden_act=self.hidden_act,
          hidden_dropout_prob=self.hidden_dropout_prob,
          attention_probs_dropout_prob=self.attention_probs_dropout_prob,
          max_position_embeddings=self.max_position_embeddings,
          type_vocab_size=self.type_vocab_size,
          initializer_range=self.initializer_range)

      model = modeling.AlbertModel(
          config=config,
          is_training=self.is_training,
          input_ids=input_ids,
          input_mask=input_mask,
          token_type_ids=token_type_ids,
          scope=self.scope)

      outputs = {
          "embedding_output": model.get_embedding_output(),
          "sequence_output": model.get_sequence_output(),
          "pooled_output": model.get_pooled_output(),
          "all_encoder_layers": model.get_all_encoder_layers(),
      }
      return outputs

    def check_output(self, result):
      self.parent.assertAllEqual(
          result["embedding_output"].shape,
          [self.batch_size, self.seq_length, self.embedding_size])

      self.parent.assertAllEqual(
          result["sequence_output"].shape,
          [self.batch_size, self.seq_length, self.hidden_size])

      self.parent.assertAllEqual(result["pooled_output"].shape,
                                 [self.batch_size, self.hidden_size])

  def test_default(self):
    self.run_tester(AlbertModelTest.AlbertModelTester(self))

  def test_config_to_json_string(self):
    config = modeling.AlbertConfig(vocab_size=99, hidden_size=37)
    obj = json.loads(config.to_json_string())
    self.assertEqual(obj["vocab_size"], 99)
    self.assertEqual(obj["hidden_size"], 37)

  def test_einsum_via_matmul(self):
    batch_size = 8
    seq_length = 12
    num_attention_heads = 3
    head_size = 6
    hidden_size = 10

    input_tensor = np.random.uniform(0, 1,
                                     [batch_size, seq_length, hidden_size])
    input_tensor = tf.constant(input_tensor, dtype=tf.float32)
    w = np.random.uniform(0, 1, [hidden_size, num_attention_heads, head_size])
    w = tf.constant(w, dtype=tf.float32)
    ret1 = tf.einsum("BFH,HND->BFND", input_tensor, w)
    ret2 = modeling.einsum_via_matmul(input_tensor, w, 1)
    self.assertAllClose(ret1, ret2)

    input_tensor = np.random.uniform(0, 1,
                                     [batch_size, seq_length,
                                      num_attention_heads, head_size])
    input_tensor = tf.constant(input_tensor, dtype=tf.float32)
    w = np.random.uniform(0, 1, [num_attention_heads, head_size, hidden_size])
    w = tf.constant(w, dtype=tf.float32)
    ret1 = tf.einsum("BFND,NDH->BFH", input_tensor, w)
    ret2 = modeling.einsum_via_matmul(input_tensor, w, 2)
    self.assertAllClose(ret1, ret2)

  def run_tester(self, tester):
    with self.test_session() as sess:
      ops = tester.create_model()
      init_op = tf.group(tf.global_variables_initializer(),
                         tf.local_variables_initializer())
      sess.run(init_op)
      output_result = sess.run(ops)
      tester.check_output(output_result)

      self.assert_all_tensors_reachable(sess, [init_op, ops])

  @classmethod
  def ids_tensor(cls, shape, vocab_size, rng=None, name=None):
    """Creates a random int32 tensor of the shape within the vocab size."""
    if rng is None:
      rng = random.Random()

    total_dims = 1
    for dim in shape:
      total_dims *= dim

    values = []
    for _ in range(total_dims):
      values.append(rng.randint(0, vocab_size - 1))

    return tf.constant(value=values, dtype=tf.int32, shape=shape, name=name)

  def assert_all_tensors_reachable(self, sess, outputs):
    """Checks that all the tensors in the graph are reachable from outputs."""
    graph = sess.graph

    ignore_strings = [
        "^.*/assert_less_equal/.*$",
        "^.*/dilation_rate$",
        "^.*/Tensordot/concat$",
        "^.*/Tensordot/concat/axis$",
        "^testing/.*$",
    ]

    ignore_regexes = [re.compile(x) for x in ignore_strings]

    unreachable = self.get_unreachable_ops(graph, outputs)
    filtered_unreachable = []
    for x in unreachable:
      do_ignore = False
      for r in ignore_regexes:
        m = r.match(six.ensure_str(x.name))
        if m is not None:
          do_ignore = True
      if do_ignore:
        continue
      filtered_unreachable.append(x)
    unreachable = filtered_unreachable

    self.assertEqual(
        len(unreachable), 0, "The following ops are unreachable: %s" %
        (" ".join([x.name for x in unreachable])))

  @classmethod
  def get_unreachable_ops(cls, graph, outputs):
    """Finds all of the tensors in graph that are unreachable from outputs."""
    outputs = cls.flatten_recursive(outputs)
    output_to_op = collections.defaultdict(list)
    op_to_all = collections.defaultdict(list)
    assign_out_to_in = collections.defaultdict(list)

    for op in graph.get_operations():
      for x in op.inputs:
        op_to_all[op.name].append(x.name)
      for y in op.outputs:
        output_to_op[y.name].append(op.name)
        op_to_all[op.name].append(y.name)
      if str(op.type) == "Assign":
        for y in op.outputs:
          for x in op.inputs:
            assign_out_to_in[y.name].append(x.name)

    assign_groups = collections.defaultdict(list)
    for out_name in assign_out_to_in.keys():
      name_group = assign_out_to_in[out_name]
      for n1 in name_group:
        assign_groups[n1].append(out_name)
        for n2 in name_group:
          if n1 != n2:
            assign_groups[n1].append(n2)

    seen_tensors = {}
    stack = [x.name for x in outputs]
    while stack:
      name = stack.pop()
      if name in seen_tensors:
        continue
      seen_tensors[name] = True

      if name in output_to_op:
        for op_name in output_to_op[name]:
          if op_name in op_to_all:
            for input_name in op_to_all[op_name]:
              if input_name not in stack:
                stack.append(input_name)

      expanded_names = []
      if name in assign_groups:
        for assign_name in assign_groups[name]:
          expanded_names.append(assign_name)

      for expanded_name in expanded_names:
        if expanded_name not in stack:
          stack.append(expanded_name)

    unreachable_ops = []
    for op in graph.get_operations():
      is_unreachable = False
      all_names = [x.name for x in op.inputs] + [x.name for x in op.outputs]
      for name in all_names:
        if name not in seen_tensors:
          is_unreachable = True
      if is_unreachable:
        unreachable_ops.append(op)
    return unreachable_ops

  @classmethod
  def flatten_recursive(cls, item):
    """Flattens (potentially nested) a tuple/dictionary/list to a list."""
    output = []
    if isinstance(item, list):
      output.extend(item)
    elif isinstance(item, tuple):
      output.extend(list(item))
    elif isinstance(item, dict):
      for (_, v) in six.iteritems(item):
        output.append(v)
    else:
      return [item]

    flat_output = []
    for x in output:
      flat_output.extend(cls.flatten_recursive(x))
    return flat_output


if __name__ == "__main__":
  tf.test.main()